昇思25天学习打卡营第19天|LSTM+CRF序列标注

概述

序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。

条件随机场(CRF)

对序列进行标注,实际上是对序列中每个Token进行标签预测,可以直接视作简单的多分类问题。但是序列标注不仅仅需要对单个Token进行分类预测,同时相邻Token直接有关联关系。

x=\begin{Bmatrix} x_0,...,x_n \end{Bmatrix}为输入序列,y=\begin{Bmatrix} y_0,...,y_n \end{Bmatrix}为输出的标注序列,输出序列y的概率为:

P(y|x)=\frac{exp(Score(x,y))}{\sum_{y'\in Y}exp(Score(x,y'))}

定义两个概率函数

1. 发射概率函数\psi _{EMIT}:表示x_i\rightarrow y_i的概率

2. 转移概率函数\psi _{TRANS}:表示y_{i-1}\rightarrow y_i的概率

于是可以得到Score的计算公式:

Score(x,y)=\sum_ilog\psi _{EMIT}(x_i\rightarrow y_i)+log\psi_{TRANS}(y_{i-1}\rightarrow y_i)

设标签集合为T,构造大小为\left | T \right |\times \left | T \right |的矩阵P,用于存储标签间的转移概率。

实现CRF层的前向训练部分,将CRF和损失函数做合并,选择分类问题常用的负对数似然函数,则有:

Loss=-log(P(y|x))

Loss=-log(\frac{exp(Score(x,y))}{\sum_{y'\in Y}exp(Score(x,y'))}) \newline=log(\sum_{y'\in Y}exp(Score(x,y'))-Score(x,y))

Score计算

def compute_score(emissions, tags, seq_ends, mask, trans, start_trans, end_trans):# emissions: (seq_length, batch_size, num_tags)# tags: (seq_length, batch_size)# mask: (seq_length, batch_size)seq_length, batch_size = tags.shapemask = mask.astype(emissions.dtype)# 将score设置为初始转移概率# shape: (batch_size,)score = start_trans[tags[0]]# score += 第一次发射概率# shape: (batch_size,)score += emissions[0, mnp.arange(batch_size), tags[0]]for i in range(1, seq_length):# 标签由i-1转移至i的转移概率(当mask == 1时有效)# shape: (batch_size,)score += trans[tags[i - 1], tags[i]] * mask[i]# 预测tags[i]的发射概率(当mask == 1时有效)# shape: (batch_size,)score += emissions[i, mnp.arange(batch_size), tags[i]] * mask[i]# 结束转移# shape: (batch_size,)last_tags = tags[seq_ends, mnp.arange(batch_size)]# score += 结束转移概率# shape: (batch_size,)score += end_trans[last_tags]return score

Normalizer计算

Normalizer可以改写为以下形式:

log(\sum_{y'_{0,i}\in Y}exp(Score_i))=log(\sum_{y'_{0,i-1}\in Y}exp(Score_{i-1}+h_i+P))

Normalizer代码实现如下:

def compute_normalizer(emissions, mask, trans, start_trans, end_trans):# emissions: (seq_length, batch_size, num_tags)# mask: (seq_length, batch_size)seq_length = emissions.shape[0]# 将score设置为初始转移概率,并加上第一次发射概率# shape: (batch_size, num_tags)score = start_trans + emissions[0]for i in range(1, seq_length):# 扩展score的维度用于总score的计算# shape: (batch_size, num_tags, 1)broadcast_score = score.expand_dims(2)# 扩展emission的维度用于总score的计算# shape: (batch_size, 1, num_tags)broadcast_emissions = emissions[i].expand_dims(1)# 根据公式(7),计算score_i# 此时broadcast_score是由第0个到当前Token所有可能路径# 对应score的log_sum_exp# shape: (batch_size, num_tags, num_tags)next_score = broadcast_score + trans + broadcast_emissions# 对score_i做log_sum_exp运算,用于下一个Token的score计算# shape: (batch_size, num_tags)next_score = ops.logsumexp(next_score, axis=1)# 当mask == 1时,score才会变化# shape: (batch_size, num_tags)score = mnp.where(mask[i].expand_dims(1), next_score, score)# 最后加结束转移概率# shape: (batch_size, num_tags)score += end_trans# 对所有可能的路径得分求log_sum_exp# shape: (batch_size,)return ops.logsumexp(score, axis=1)

Viterbi算法

在完成前向训练部分后,需要实现解码部分。Viterbi算法与计算Normalizer类似,使用动态规划求解所有可能的预测序列得分。不同的是在解码时同时需要将第i个Token对应的score取值最大的标签保存,供后续使用Viterbi算法求解最优预测序列使用。

取得最大概率得分ScoreScore,以及每个Token对应的标签历史HistoryHistory后,根据Viterbi算法可以得到公式:

P_{0,i}=max(P_{0,i-1})+P_{i-1,i}

代码实现:

def viterbi_decode(emissions, mask, trans, start_trans, end_trans):# emissions: (seq_length, batch_size, num_tags)# mask: (seq_length, batch_size)seq_length = mask.shape[0]score = start_trans + emissions[0]history = ()for i in range(1, seq_length):broadcast_score = score.expand_dims(2)broadcast_emission = emissions[i].expand_dims(1)next_score = broadcast_score + trans + broadcast_emission# 求当前Token对应score取值最大的标签,并保存indices = next_score.argmax(axis=1)history += (indices,)next_score = next_score.max(axis=1)score = mnp.where(mask[i].expand_dims(1), next_score, score)score += end_transreturn score, historydef post_decode(score, history, seq_length):# 使用Score和History计算最佳预测序列batch_size = seq_length.shape[0]seq_ends = seq_length - 1# shape: (batch_size,)best_tags_list = []# 依次对一个Batch中每个样例进行解码for idx in range(batch_size):# 查找使最后一个Token对应的预测概率最大的标签,# 并将其添加至最佳预测序列存储的列表中best_last_tag = score[idx].argmax(axis=0)best_tags = [int(best_last_tag.asnumpy())]# 重复查找每个Token对应的预测概率最大的标签,加入列表for hist in reversed(history[:seq_ends[idx]]):best_last_tag = hist[idx][best_tags[-1]]best_tags.append(int(best_last_tag.asnumpy()))# 将逆序求解的序列标签重置为正序best_tags.reverse()best_tags_list.append(best_tags)return best_tags_list

CRF层

CRF的输入需要考虑输入序列的真实长度,因此除发射矩阵和标签外,加入 seq_length 参数传入序列Padding前的长度,并实现生成mask矩阵的 sequence_mask 方法。

代码实现:

import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
import mindspore.numpy as mnp
from mindspore.common.initializer import initializer, Uniformdef sequence_mask(seq_length, max_length, batch_first=False):"""根据序列实际长度和最大长度生成mask矩阵"""range_vector = mnp.arange(0, max_length, 1, seq_length.dtype)result = range_vector < seq_length.view(seq_length.shape + (1,))if batch_first:return result.astype(ms.int64)return result.astype(ms.int64).swapaxes(0, 1)class CRF(nn.Cell):def __init__(self, num_tags: int, batch_first: bool = False, reduction: str = 'sum') -> None:if num_tags <= 0:raise ValueError(f'invalid number of tags: {num_tags}')super().__init__()if reduction not in ('none', 'sum', 'mean', 'token_mean'):raise ValueError(f'invalid reduction: {reduction}')self.num_tags = num_tagsself.batch_first = batch_firstself.reduction = reductionself.start_transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags,)), name='start_transitions')self.end_transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags,)), name='end_transitions')self.transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags, num_tags)), name='transitions')def construct(self, emissions, tags=None, seq_length=None):if tags is None:return self._decode(emissions, seq_length)return self._forward(emissions, tags, seq_length)def _forward(self, emissions, tags=None, seq_length=None):if self.batch_first:batch_size, max_length = tags.shapeemissions = emissions.swapaxes(0, 1)tags = tags.swapaxes(0, 1)else:max_length, batch_size = tags.shapeif seq_length is None:seq_length = mnp.full((batch_size,), max_length, ms.int64)mask = sequence_mask(seq_length, max_length)# shape: (batch_size,)numerator = compute_score(emissions, tags, seq_length-1, mask, self.transitions, self.start_transitions, self.end_transitions)# shape: (batch_size,)denominator = compute_normalizer(emissions, mask, self.transitions, self.start_transitions, self.end_transitions)# shape: (batch_size,)llh = denominator - numeratorif self.reduction == 'none':return llhif self.reduction == 'sum':return llh.sum()if self.reduction == 'mean':return llh.mean()return llh.sum() / mask.astype(emissions.dtype).sum()def _decode(self, emissions, seq_length=None):if self.batch_first:batch_size, max_length = emissions.shape[:2]emissions = emissions.swapaxes(0, 1)else:batch_size, max_length = emissions.shape[:2]if seq_length is None:seq_length = mnp.full((batch_size,), max_length, ms.int64)mask = sequence_mask(seq_length, max_length)return viterbi_decode(emissions, mask, self.transitions, self.start_transitions, self.end_transitions)

BiLSTM+CRF模型

其中LSTM提取序列特征,经过Dense层变换获得发射概率矩阵,最后送入CRF层。具体实现如下:

class BiLSTM_CRF(nn.Cell):def __init__(self, vocab_size, embedding_dim, hidden_dim, num_tags, padding_idx=0):super().__init__()self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=padding_idx)self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, bidirectional=True, batch_first=True)self.hidden2tag = nn.Dense(hidden_dim, num_tags, 'he_uniform')self.crf = CRF(num_tags, batch_first=True)def construct(self, inputs, seq_length, tags=None):embeds = self.embedding(inputs)outputs, _ = self.lstm(embeds, seq_length=seq_length)feats = self.hidden2tag(outputs)crf_outs = self.crf(feats, tags, seq_length)return crf_outs

完成模型设计后,我们生成两句例子和对应的标签,并构造词表和标签表。

embedding_dim = 16
hidden_dim = 32training_data = [("清 华 大 学 坐 落 于 首 都 北 京".split(),"B I I I O O O O O B I".split()
), ("重 庆 是 一 个 魔 幻 城 市".split(),"B I O O O O O O O".split()
)]word_to_idx = {}
word_to_idx['<pad>'] = 0
for sentence, tags in training_data:for word in sentence:if word not in word_to_idx:word_to_idx[word] = len(word_to_idx)tag_to_idx = {"B": 0, "I": 1, "O": 2}

接下来实例化模型,选择优化器并将模型和优化器送入Wrapper。

model = BiLSTM_CRF(len(word_to_idx), embedding_dim, hidden_dim, len(tag_to_idx))
optimizer = nn.SGD(model.trainable_params(), learning_rate=0.01, weight_decay=1e-4)grad_fn = ms.value_and_grad(model, None, optimizer.parameters)def train_step(data, seq_length, label):loss, grads = grad_fn(data, seq_length, label)optimizer(grads)return loss

将生成的数据打包成Batch,按照序列最大长度,对长度不足的序列进行填充,分别返回输入序列、输出标签和序列长度构成的Tensor。

def prepare_sequence(seqs, word_to_idx, tag_to_idx):seq_outputs, label_outputs, seq_length = [], [], []max_len = max([len(i[0]) for i in seqs])for seq, tag in seqs:seq_length.append(len(seq))idxs = [word_to_idx[w] for w in seq]labels = [tag_to_idx[t] for t in tag]idxs.extend([word_to_idx['<pad>'] for i in range(max_len - len(seq))])labels.extend([tag_to_idx['O'] for i in range(max_len - len(seq))])seq_outputs.append(idxs)label_outputs.append(labels)return ms.Tensor(seq_outputs, ms.int64), \ms.Tensor(label_outputs, ms.int64), \ms.Tensor(seq_length, ms.int64)

对模型进行预编译后,训练500个step。

from tqdm import tqdmsteps = 500
with tqdm(total=steps) as t:for i in range(steps):loss = train_step(data, seq_length, label)t.set_postfix(loss=loss)t.update(1)

最后将预测的index序列转换为标签序列,打印输出结果,查看效果。

idx_to_tag = {idx: tag for tag, idx in tag_to_idx.items()}def sequence_to_tag(sequences, idx_to_tag):outputs = []for seq in sequences:outputs.append([idx_to_tag[i] for i in seq])return outputssequence_to_tag(predict, idx_to_tag)

得到输出标签

[['B', 'I', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'B', 'I'],['B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O']]

总结

LSTM用于提取序列特征,CRF用于序列标注,从而实现语义的切分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/867712.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

水箱高低水位浮球液位开关

水箱高低水位浮球液位开关概述 水箱高低水位浮球液位开关是一种用于监测和控制水箱中液位的自动化设备&#xff0c;它能够在水箱液位达到预设的高低限制时&#xff0c;输出开关信号&#xff0c;以控制水泵或电磁阀的开闭&#xff0c;从而维持水箱液位在一个安全的范围内。这类设…

【排序算法】插入排序(希尔排序)

一.直接插入排序 1.基本思想 直接插入排序是一种简单的插入排序法&#xff0c;其核心思想是对一个已经有序的序列插入一个数据&#xff0c;该数据依次比较有序序列中的值&#xff0c;直到插入到合适的位置。在我们玩扑克牌整理牌序的时候&#xff0c;用到的就是直接插入排序的…

Vue3.js“非原始值”响应式实现基本原理笔记(二)

如果您觉得这篇文章有帮助的话&#xff01;给个点赞和评论支持下吧&#xff0c;感谢~ 作者&#xff1a;前端小王hs 阿里云社区博客专家/清华大学出版社签约作者/csdn百万访问前端博主/B站千粉前端up主 此篇文章是博主于2022年学习《Vue.js设计与实现》时的笔记整理而来 书籍&a…

28行代码完成深度学习模型——线性模型 01

在这里插入代码片## 线性模型 机器学习中的线性模型是一种预测模型&#xff0c;它基于线性关系来预测输出值。这种模型假设输入特征&#xff08;自变量&#xff09;和输出&#xff08;因变量&#xff09;之间存在线性关系。线性模型通常具有以下形式&#xff1a; y x*w b 其…

【TB作品】数码管独立按键密码锁,ATMEGA16单片机,Proteus仿真 atmega16数码管独立按键密码锁

文章目录 基于ATmega16的数码管独立按键密码锁设计实验报告实验背景硬件介绍主要元器件电路连接 设计原理硬件设计软件设计 程序原理延时函数独立按键检测密码显示主函数 资源代码 基于ATmega16的数码管独立按键密码锁设计实验报告 实验背景 本实验旨在设计并实现一个基于ATm…

数据库系统原理练习 | 作业1-第1章绪论(附答案)

整理自博主本科《数据库系统原理》专业课完成的课后作业&#xff0c;以便各位学习数据库系统概论的小伙伴们参考、学习。 *文中若存在书写不合理的地方&#xff0c;欢迎各位斧正。 专业课本&#xff1a; 目录 一、选择题 二&#xff1a;简答题 三&#xff1a;综合题 一、选择…

DAY21-力扣刷题

1.买卖股票的最佳时机 121. 买卖股票的最佳时机 - 力扣&#xff08;LeetCode&#xff09; class Solution {public int maxProfit(int[] prices) {int minpriceInteger.MAX_VALUE;int maxprofit0;for(int i0;i<prices.length;i){if(prices[i]<minprice){minpriceprices[…

昇思MindSpore学习笔记5-01生成式--LSTM+CRF序列标注

摘要&#xff1a; 记录昇思MindSpore AI框架使用LSTMCRF模型分词标注的步骤和方法。包括环境准备、score计算、Normalizer计算、Viterbi算法、CRF组合,以及改进的双向LSTMCRF模型。 一、概念 1.序列标注 标注标签输入序列中的每个Token 用于抽取文本信息 分词(Word Segment…

InetAddress.getLocalHost().getHostAddress()阻塞导致整个微服务崩溃

InetAddress.getLocalHost().getHostAddress()阻塞导致整个微服务崩溃 import java.net.InetAddress;public class GetHostIp {public static void main(String[] args) {try {long start System.currentTimeMillis();String ipAddress InetAddress.getLocalHost().getHostA…

【计算机网络】物理层(作业)

1、若信道在无噪声情况下的极限数据传输速率不小于信噪比为30dB 条件下的极限数据传输速率&#xff0c;则信号状态数至少是&#xff08;D&#xff09;。 A. 4B. 16C. 8D. 32 解析&#xff1a;可用奈奎斯特采样定理计算无噪声情况下的极限数据传输速率&#xff0c;用香农第二定…

Docker 容器网络及其配置说明

Docker 容器网络及其配置说明 docker容器网络docker的4种网络模式bridge 模式container模式host 模式none 模式应用场景 docker 容器网络配置Linux 内核实现名称空间的创建创建 Network Namespace操作 Network Namespace 转移设备veth pair创建 veth pair实现 Network Namespac…

三、docker配置阿里云镜像仓库并配置docker代理

一、配置阿里云镜像仓库 1. 登录阿里云官网&#xff0c;并登录 https://www.aliyun.com/ 2. 点击产品 - 容器 - 容器与镜像服务ACR - 管理控制台 - 镜像工具 - 镜像加速器 二、配置docker代理 #1. 创建docker相关的systemd文件 mkdir -p /etc/systemd/system/docker.servic…

SQLite 嵌入式数据库

目录&#xff1a; 一、SQLite 简介二、SQLite 数据库安装1、安装方式一&#xff1a;2、安装方式二&#xff1a; 三、SQLite 的命令用法1、创建、打开、退出数据库&#xff1a;2、编辑数据库&#xff1a; 四、SQLite 的编程操作1、打开 / 创建数据库的 C 接口&#xff1a;2、操作…

Qt/C++音视频开发78-获取本地摄像头支持的分辨率/帧率/格式等信息/mjpeg/yuyv/h264

一、前言 上一篇文章讲到用ffmpeg命令方式执行打印到日志输出&#xff0c;可以拿到本地摄像头设备信息&#xff0c;顺藤摸瓜&#xff0c;发现可以通过执行 ffmpeg -f dshow -list_options true -i video“Webcam” 命令获取指定摄像头设备的分辨率帧率格式等信息&#xff0c;会…

基于springboot+vue+uniapp的高校宿舍信息管理系统小程序

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…

【数据结构/操作系统 堆和栈】区别及应用场景、底层原理图解

堆和栈 比较有趣的是&#xff0c;计算机网络、操作系统中都会对堆栈有不同方面比较详细的描述&#xff0c;而使用的地方通常对这些底层的细节表现得没有那么明显。 但如果你能了解堆栈在计算机网络和操作系统中的表现形式&#xff0c;在你写代码时就会有不一样的认识&#xff…

Nordic 52832作为HID 键盘连接配对电视/投影后控制没反应问题的分析和解决

问题现象&#xff1a;我们的一款HID键盘硬件一直都工作的很好&#xff0c;连接配对后使用起来和原装键盘效果差不多&#xff0c;但是后面陆续有用户反馈家里的电视等蓝牙设备配对连接我们的键盘后&#xff0c;虽然显示已连接&#xff0c;但实际上控制不了。设备涉及到了好些品牌…

Sentinel-1 Level 1数据处理的详细算法定义(一)

《Sentinel-1 Level 1数据处理的详细算法定义》文档定义和描述了Sentinel-1实现的Level 1处理算法和方程&#xff0c;以便生成Level 1产品。这些算法适用于Sentinel-1的Stripmap、Interferometric Wide-swath (IW)、Extra-wide-swath (EW)和Wave模式。 今天介绍的内容如下&…

linux软链接和硬链接的区别

1 创建软链接和硬链接 如下图所示&#xff0c;一开始有两个文件soft和hard。使用 ln -s soft soft1创建软链接&#xff0c;soft1是soft的软链接&#xff1b;使用ln hard hard1创建硬链接&#xff0c;hard1是hard的硬链接。可以看到软链接的文件类型和其它3个文件的文件类型是不…

【JVM系列】Full GC(完全垃圾回收)的原因及分析

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…