28行代码完成深度学习模型——线性模型 01

在这里插入代码片## 线性模型
机器学习中的线性模型是一种预测模型,它基于线性关系来预测输出值。这种模型假设输入特征(自变量)和输出(因变量)之间存在线性关系。线性模型通常具有以下形式:

y = x*w + b

其中:

  • y 是要预测的输出值。
  • x 是输入特征。
  • b 是模型的偏置项(bias),可以理解为当所有特征都为零时的输出值。
  • w 是模型参数(weights),表示每个特征对输出的影响程度。

如下图所示,先不考虑b的形况下,绘图
在这里插入图片描述
然后计算loss(也就是误差)
在这里插入图片描述
代码:

import numpy as np
import matplotlib.pyplot as pltx_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]def forward(x):return x*w def loss(x,y):y_pred = forward(x)return (y_pred - y) * (y_pred - y) w_list = []
mse_list = []for w in np.arange (0.0, 4.1, 0.1):print('w=',w)l_sum =0for x_val,y_val in zip( x_data,y_data ):y_pred_val =format(x_val)loss_val = loss(x_val,y_val)l_sum += loss_valprint('t',x_val,y_val,y_pred_val,loss_val)print('MSE', l_sum/3)w_list.append(w)mse_list.append(l_sum/3)plt.plot(w_list,mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()

结果图:
在这里插入图片描述

考虑偏置B

代码:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3Dx_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]def forward(x):return x*w + bdef loss(x,y):y_pred = forward(x)return (y_pred - y) * (y_pred - y) mse_list = []
W = np.arange(0.0, 4.1, 0.1)
B = np.arange(0.0, 4.1, 0.1)
[w,b] = np.meshgrid(W,B)l_sum = 0
for x_val,y_val in zip( x_data,y_data ):y_pred_val = forward(x_val)print(y_pred_val)loss_val = loss(x_val,y_val)l_sum += loss_valfig = plt.figure()
#ax = Axes3D(fig)
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(w, b, l_sum /3)
plt.show()

效果图:
在这里插入图片描述

线性模型可以进一步细分为几种类型:

  1. 简单线性回归:只有一个特征和一个输出变量。
  2. 多元线性回归:有多个特征和一个输出变量。
  3. 逻辑回归:虽然名字中有“回归”,但它实际上是一种分类算法,用于二分类问题,输出的是概率。

线性模型的优点包括:

  • 简单易懂,易于实现。
  • 计算效率高,尤其是在特征数量不多的情况下。
  • 可以提供可解释的模型参数,有助于理解特征对输出的影响。

然而,线性模型也有一些局限性:

  • 它假设特征和输出之间存在线性关系,这在现实世界中并不总是成立。
  • 对异常值敏感,可能会影响模型的准确性。
  • 无法捕捉特征之间的交互作用或非线性关系。

在实际应用中,线性模型通常作为基线模型,用于与其他更复杂的模型进行比较。如果数据集的特征和目标变量之间确实存在线性关系,线性模型可以提供非常有效的解决方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/867707.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【TB作品】数码管独立按键密码锁,ATMEGA16单片机,Proteus仿真 atmega16数码管独立按键密码锁

文章目录 基于ATmega16的数码管独立按键密码锁设计实验报告实验背景硬件介绍主要元器件电路连接 设计原理硬件设计软件设计 程序原理延时函数独立按键检测密码显示主函数 资源代码 基于ATmega16的数码管独立按键密码锁设计实验报告 实验背景 本实验旨在设计并实现一个基于ATm…

数据库系统原理练习 | 作业1-第1章绪论(附答案)

整理自博主本科《数据库系统原理》专业课完成的课后作业,以便各位学习数据库系统概论的小伙伴们参考、学习。 *文中若存在书写不合理的地方,欢迎各位斧正。 专业课本: 目录 一、选择题 二:简答题 三:综合题 一、选择…

DAY21-力扣刷题

1.买卖股票的最佳时机 121. 买卖股票的最佳时机 - 力扣&#xff08;LeetCode&#xff09; class Solution {public int maxProfit(int[] prices) {int minpriceInteger.MAX_VALUE;int maxprofit0;for(int i0;i<prices.length;i){if(prices[i]<minprice){minpriceprices[…

昇思MindSpore学习笔记5-01生成式--LSTM+CRF序列标注

摘要&#xff1a; 记录昇思MindSpore AI框架使用LSTMCRF模型分词标注的步骤和方法。包括环境准备、score计算、Normalizer计算、Viterbi算法、CRF组合,以及改进的双向LSTMCRF模型。 一、概念 1.序列标注 标注标签输入序列中的每个Token 用于抽取文本信息 分词(Word Segment…

InetAddress.getLocalHost().getHostAddress()阻塞导致整个微服务崩溃

InetAddress.getLocalHost().getHostAddress()阻塞导致整个微服务崩溃 import java.net.InetAddress;public class GetHostIp {public static void main(String[] args) {try {long start System.currentTimeMillis();String ipAddress InetAddress.getLocalHost().getHostA…

【计算机网络】物理层(作业)

1、若信道在无噪声情况下的极限数据传输速率不小于信噪比为30dB 条件下的极限数据传输速率&#xff0c;则信号状态数至少是&#xff08;D&#xff09;。 A. 4B. 16C. 8D. 32 解析&#xff1a;可用奈奎斯特采样定理计算无噪声情况下的极限数据传输速率&#xff0c;用香农第二定…

Docker 容器网络及其配置说明

Docker 容器网络及其配置说明 docker容器网络docker的4种网络模式bridge 模式container模式host 模式none 模式应用场景 docker 容器网络配置Linux 内核实现名称空间的创建创建 Network Namespace操作 Network Namespace 转移设备veth pair创建 veth pair实现 Network Namespac…

三、docker配置阿里云镜像仓库并配置docker代理

一、配置阿里云镜像仓库 1. 登录阿里云官网&#xff0c;并登录 https://www.aliyun.com/ 2. 点击产品 - 容器 - 容器与镜像服务ACR - 管理控制台 - 镜像工具 - 镜像加速器 二、配置docker代理 #1. 创建docker相关的systemd文件 mkdir -p /etc/systemd/system/docker.servic…

SQLite 嵌入式数据库

目录&#xff1a; 一、SQLite 简介二、SQLite 数据库安装1、安装方式一&#xff1a;2、安装方式二&#xff1a; 三、SQLite 的命令用法1、创建、打开、退出数据库&#xff1a;2、编辑数据库&#xff1a; 四、SQLite 的编程操作1、打开 / 创建数据库的 C 接口&#xff1a;2、操作…

Qt/C++音视频开发78-获取本地摄像头支持的分辨率/帧率/格式等信息/mjpeg/yuyv/h264

一、前言 上一篇文章讲到用ffmpeg命令方式执行打印到日志输出&#xff0c;可以拿到本地摄像头设备信息&#xff0c;顺藤摸瓜&#xff0c;发现可以通过执行 ffmpeg -f dshow -list_options true -i video“Webcam” 命令获取指定摄像头设备的分辨率帧率格式等信息&#xff0c;会…

基于springboot+vue+uniapp的高校宿舍信息管理系统小程序

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…

【数据结构/操作系统 堆和栈】区别及应用场景、底层原理图解

堆和栈 比较有趣的是&#xff0c;计算机网络、操作系统中都会对堆栈有不同方面比较详细的描述&#xff0c;而使用的地方通常对这些底层的细节表现得没有那么明显。 但如果你能了解堆栈在计算机网络和操作系统中的表现形式&#xff0c;在你写代码时就会有不一样的认识&#xff…

Nordic 52832作为HID 键盘连接配对电视/投影后控制没反应问题的分析和解决

问题现象&#xff1a;我们的一款HID键盘硬件一直都工作的很好&#xff0c;连接配对后使用起来和原装键盘效果差不多&#xff0c;但是后面陆续有用户反馈家里的电视等蓝牙设备配对连接我们的键盘后&#xff0c;虽然显示已连接&#xff0c;但实际上控制不了。设备涉及到了好些品牌…

Sentinel-1 Level 1数据处理的详细算法定义(一)

《Sentinel-1 Level 1数据处理的详细算法定义》文档定义和描述了Sentinel-1实现的Level 1处理算法和方程&#xff0c;以便生成Level 1产品。这些算法适用于Sentinel-1的Stripmap、Interferometric Wide-swath (IW)、Extra-wide-swath (EW)和Wave模式。 今天介绍的内容如下&…

linux软链接和硬链接的区别

1 创建软链接和硬链接 如下图所示&#xff0c;一开始有两个文件soft和hard。使用 ln -s soft soft1创建软链接&#xff0c;soft1是soft的软链接&#xff1b;使用ln hard hard1创建硬链接&#xff0c;hard1是hard的硬链接。可以看到软链接的文件类型和其它3个文件的文件类型是不…

【JVM系列】Full GC(完全垃圾回收)的原因及分析

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

使用Python实现CartPole游戏

在深度强化学习内容的介绍中&#xff0c;提出了CartPole游戏进行深度强化学习&#xff0c;现在提供一种用Python简单实现Cart Pole游戏的方法。 1. 游戏介绍 CartPole 游戏是一个经典的强化学习问题&#xff0c;其中有一个小车&#xff08;cart&#xff09;和一个杆&#xff…

用网络编程完成windows和linux跨平台之间的通信(服务器)

服务器代码逻辑&#xff1a; 服务器功能 创建 Socket&#xff1a; 服务器首先创建一个 Socket 对象&#xff0c;用于进行网络通信。通常使用 socket() 函数创建。 绑定&#xff08;Bind&#xff09;&#xff1a; 服务器将 Socket 绑定到一个特定的 IP 地址和端口号上。这是通过…

昇思25天学习打卡营第19天 | RNN实现情感分类

RNN实现情感分类 概述 情感分类是自然语言处理中的经典任务&#xff0c;是典型的分类问题。本节使用MindSpore实现一个基于RNN网络的情感分类模型&#xff0c;实现如下的效果&#xff1a; 输入: This film is terrible 正确标签: Negative 预测标签: Negative输入: This fil…

Go 中的类型推断

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…