【深度学习练习】心脏病预测

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

一、什么是RNN

RNN与传统神经网络最大的区别在于,每次都会将前一次的输出结果,带到下一隐藏层中一起训练。如下图所示:
在这里插入图片描述

二、前期工作

1. 设置GPU

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

数据介绍:

age:年龄
sex:性别
cp:胸痛类型 (4 values)
trestbps:静息血压
chol:血清胆甾醇 (mg/dl)
fbs:空腹血糖 > 120 mg/dl
restecg:静息心电图结果 (值 0,1 ,2)
thalach:达到的最大心率
exang:运动诱发的心绞痛
oldpeak:相对于静止状态,运动引起的ST段压低
slope:运动峰值 ST 段的斜率
ca:荧光透视着色的主要血管数量 (0-3)
thal:0 = 正常;1 = 固定缺陷;2 = 可逆转的缺陷
target:0 = 心脏病发作的几率较小 1 = 心脏病发作的几率更大

import pandas as pd
import numpy as npdf = pd.read_csv(r"D:\Personal Data\Learning Data\DL Learning Data\heart.csv")
df

输出:
在这里插入图片描述

3. 检查数据

df.isnull().sum()

输出:
在这里插入图片描述

三、数据预处理

1. 划分数据集

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_splitx = df.iloc[:,:-1]
y = df.iloc[:,-1]x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=1)
x_train.shape, y_train.shape

输出:
在这里插入图片描述

2. 标准化

# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test  = sc.transform(x_test)x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1)
x_test  = x_test.reshape(x_test.shape[0], x_test.shape[1], 1)

3. 构建RNN模型

import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,LSTM,SimpleRNNmodel = Sequential()
model.add(SimpleRNN(128, input_shape= (13,1),return_sequences=True,activation='relu'))
model.add(SimpleRNN(64,return_sequences=True, activation='relu'))
model.add(SimpleRNN(32, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()

输出:
在这里插入图片描述

五、编译模型

opt = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(loss='binary_crossentropy', optimizer=opt,metrics=['accuracy'])

六、训练模型

epochs = 50history = model.fit(x_train, y_train,epochs=epochs,batch_size=128,validation_data=(x_test, y_test),verbose=1)

部分输出:
在这里插入图片描述

model.evaluate(x_test,y_test)

输出:
在这里插入图片描述

七、模型评估

import matplotlib.pyplot as pltacc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

最后准确率输出:

scores = model.evaluate(x_test, y_test, verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

八、总结

  1. 注意numpy与panda以及matplotlib等之间的兼容性
  2. 注意对每一列的特征数据标准化处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/866622.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 运行Nacos无法访问地址解决方法

参考我的上一篇文章去配置好镜像加速器,镜像加速器不是配置越多越好,重试次数多了会失败 Dockerhub无法拉取镜像配置阿里镜像加速器-CSDN博客 错误的尝试 最开始按照网上的方式去配了一大堆,发现下不下来。 镜像源地址:https:…

Oracle 解决4031错误

一、问题描述 什么是4031错误和4031错误产生的原因: 简单一个句话概括: 由于服务器一直在执行大量的硬解析,导致Oracle 的shared pool Free空间碎片过多,大的chunk不足, 当又一条复杂的sql语句要硬解析时, 缺少1个足够大的Free chunk, 通常就会报4031错误. 二、解决方法 临…

模拟退火算法4—应用

TSP(旅行商)问题是最有代表性的优化组合问题之一,其应用已逐步渗透到各个技术领域和我们的日常生活中.它一开始是为交通运输而提出的,比如飞机航线安排、送邮件、快递服务、设计校车行进路线等等.实际上其应用范围扩展到了许多其他…

揭秘数据之美:【Seaborn】在现代【数学建模】中的革命性应用

目录 已知数据集 tips 生成数据集并保存为CSV文件 数据预览: 导入和预览数据 步骤1:绘制散点图(Scatter Plot) 步骤2:添加回归线(Regression Analysis) 步骤3:分类变量分析&…

如何查看MCU编译生成的elf(out)文件内容

一般地,我们想要知道单片机程序编译完后的结构我们可以查看map文件或者是elf/out文件,map文件不能看函数的汇编格式,只能查看编译完成后变量、代码的地址和占用空间大小,而elf文件里面更加详细,还包含了函数的汇编&…

MAS马氏数控制榫机控制面板维修显示屏MDK3113B

马氏数控榫头机触摸屏/显示面板维修型号:MX3810A;MDK3113B;MXK2815B MAS马氏数控开榫机触摸屏/显示面板维修型号: MX2108B;MD2108A;MJ105А 数控面板维修包括:马氏数控榫头机、开榫机、制榫机…

servlet学校会场预约系统-计算机毕业设计源码72972

摘要 学校会场预约是学校管理中的重要环节,但传统的手工预约方式存在效率低下和信息不准确等问题。为了提高预约效率和减少管理成本,许多学校开始采用基于Servlet技术的会场预约系统。本论文旨在设计和实现一种高效的Servlet学校会场预约系统&#xff0c…

开放式运动耳机推荐的品牌都有哪些?五款2024靠谱机型推荐!

​作为一位耳机领域的资深数码评测师,我极力推荐开放式耳机作为日常佩戴之选。这款耳机凭借其创新的非入耳设计,有效避免了传统入耳式耳机长时间佩戴导致的耳道不适和感染风险,同时提供了稳固舒适的佩戴体验,特别适合运动爱好者如…

阿里云邮件推送邮件发送失败的问题排查解决

阿里云邮件推送为何失败?解决邮件推送失败的步骤指南! 即便是功能强大的阿里云邮件推送服务,也可能在实际使用中遇到邮件发送失败的问题。AokSend将详细介绍如何排查和解决阿里云邮件推送邮件发送失败的问题。 阿里云邮件推送:验…

相关款式1111

一、花梨木迎客松 1. 风速打单 发现只有在兄弟店铺有售卖 六月份成交订单数有62笔 2. 生意参谋 兄弟店铺商品访客数:3548,支付件数:95件 二. 竹节茶刷(引流) 1. 风速打单 六月订单数有165笔 兄弟:…

SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测

SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测 目录 SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.【SCI一区级】Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测(程…

LVS+Keepalived 实现高可用负载均衡

前言 在业务量达到一定量的时候,往往单机的服务是会出现瓶颈的。此时最常见的方式就是通过负载均衡来进行横向扩展。其中我们最常用的软件就是 Nginx。通过其反向代理的能力能够轻松实现负载均衡,当有服务出现异常,也能够自动剔除。但是负载…

MViT(ICCV 2021, Meta)论文解读

paper:Multiscale Vision Transformers official implementation:https://github.com/facebookresearch/SlowFast 背景和出发点 这篇文章提出了多尺度视觉Transformer(Multiscale Vision Transformers, MViT)的概念&#xff0c…

全网视频下载之IDM下载安装,软破解

全网视频下载之IDM下载安装,软破解 介绍![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/c94f612f7a8845c8a649f74f6b18fd70.png)下载安装配置浏览器Google浏览器Ddge浏览器 界面如何下载不破解如何重复使用总结 介绍 今天给大家分享一个更加简便的全网视…

小型气象站在现代农业中的应用与前景

随着科技的飞速发展,智慧农业已成为现代农业发展的重要趋势。在这一背景下,小型气象站作为智慧农业的重要组成部分,正逐渐展现出其独特的价值和广阔的应用前景。本文将从小型气象站的定义、功能、应用案例以及未来展望等方面,探讨…

【数据结构/C++】位图

这里写自定义目录标题 哈希思想的应用位图位图概念经典面试题位图所开的空间大小STL库中的 bitset 位图 位图实现大框架位运算符<<左移 和 >>右移 移动的方位set()&#xff1a;把x映射的位标记成1set() 接口实现reset&#xff1a;把x映射的位标记成0reset() 接口te…

Static关键字的用法详解

Static关键字的用法详解 1、Static修饰内部类2、Static修饰方法3、Static修饰变量4、Static修饰代码块5、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在Java编程语言中&#xff0c;static是一个关键字&#xff0c;它可以用于多种上…

React+TS前台项目实战(二十三)-- 基于属性自定义数值显示组件Decimal封装

文章目录 前言Decimal组件1. 功能分析2. 代码详细注释3. 使用方式4. 效果展示 总结 前言 今天要封装的Decimal 组件&#xff0c;是通过传入的属性进行定制化显示数值&#xff0c;在渲染时&#xff0c;会根据不同的情况显示整数部分、小数部分和单位&#xff0c;支持自定义样式…

shell脚本awk中使用for循环

今天想使用shell脚本处理一ini文件下的ip地址&#xff0c;也就是INTRANET&#xff0c;前面的ip地址&#xff0c;折腾挺久。文件格式如下&#xff1a; 正确代码&#xff1a; grep -E INTRANET /home/aaaa/bbbb/hostinfo.ini | awk -F , {for(i1; i<NF; i) if($i~"INT…