开发经验:go切片的继承

package main  import (  "errors"  "fmt"  
)  // LimitedSlice 是一个封装了切片的结构体,用于限制切片的最大容量  
type LimitedSlice struct {  slice  []int  maxCap int  
}  // NewLimitedSlice 创建一个新的LimitedSlice实例,初始容量为0,最大容量为maxCap  
func NewLimitedSlice(maxCap int) *LimitedSlice {  return &LimitedSlice{  slice:  make([]int, 0, 0), // 初始时容量为0,长度也为0  maxCap: maxCap,  }  
}  // Append 尝试向切片中添加一个元素,如果添加后容量不超过最大容量,则返回nil;否则返回错误  
func (ls *LimitedSlice) Append(value int) error {  if len(ls.slice)+1 > ls.maxCap {  return errors.New("cannot append: slice capacity exceeds maximum")  }  // 如果当前容量不足以容纳新元素,则先扩容(但不超过最大容量)  if cap(ls.slice) < ls.maxCap {  ls.slice = append(ls.slice, 0) // 临时扩容,注意这里只是预留空间,并不添加实际元素  ls.slice = ls.slice[:len(ls.slice)-1] // 还原长度  }  // 现在可以安全地添加新元素了  ls.slice = append(ls.slice, value)  return nil  
}  // GetSlice 返回内部切片的视图(只读)  
func (ls *LimitedSlice) GetSlice() []int {  return ls.slice  
}  func main() {  ls := NewLimitedSlice(10)  for i := 0; i < 10; i++ {  if err := ls.Append(i); err != nil {  fmt.Println(err)  break  }  }  // 尝试添加第11个元素,应该会失败  if err := ls.Append(10); err != nil {  fmt.Println(err)  }  fmt.Println(ls.GetSlice()) // 输出: [0 1 2 3 4 5 6 7 8 9]  
}

上面的Append方法中的扩容逻辑实际上并不是必需的,因为当你尝试向切片添加元素时,如果切片当前的容量不足以容纳新元素,append函数会自动进行扩容(直到达到某个上限,这个上限由Go运行时决定,而不是由你指定的最大容量决定)。然而,由于我们在这里想要模拟一个最大容量的限制,所以我们没有让append自动扩容到超过我们指定的最大容量。但是,上面的代码示例中,Append方法中的扩容逻辑(即ls.slice = append(ls.slice, 0)和ls.slice = ls.slice[:len(ls.slice)-1])实际上并没有真正起到限制容量的作用,因为它只是临时地增加了一个空间然后又移除了它。在这个特定的例子中,你可以省略这部分逻辑,因为当append试图超过我们设定的最大容量时,len(ls.slice)+1 > ls.maxCap条件已经足够阻止进一步的添加操作了。

如果你想要一个更严格的容量限制,你可能需要完全避免使用append的自动扩容特性,并在每次添加元素时都手动检查容量。但是,这通常不是使用切片时推荐的做法,因为这会失去切片提供的大部分灵活性和便利性。相反,你可能需要重新考虑你的数据结构选择,或者接受Go切片在容量方面的灵活性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/865952.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据采集技术:selenium/正则匹配/xpath/beautifulsoup爬虫实例

专栏介绍 1.专栏面向零基础或基础较差的机器学习入门的读者朋友&#xff0c;旨在利用实际代码案例和通俗化文字说明&#xff0c;使读者朋友快速上手机器学习及其相关知识体系。 2.专栏内容上包括数据采集、数据读写、数据预处理、分类\回归\聚类算法、可视化等技术。 3.需要强…

电影解说 剪辑实战带货全新蓝海市场,电影解说实战课程(16节)

课程目录 1-影视解说自媒体带货新玩法_1.mp4 2-影视解说选品及解说规范标准_1.mp4 3-电影解说的脚本模版及流程_1.mp4 4-电影解说编写文案及爆火规律_1.mp4 5-手把手教你影视素材哪里找_1.mp4 6-影视解说剪辑、配音及创收方式_1.mp4 7-电影解说剪辑的实操课程A_1.mp4 8…

关于Ubuntu系统中.config文件夹如何找到

Ubuntu中QT项目使用了setting保存配置&#xff0c;但是找不到配置文件保存了在哪里&#xff0c;找了一下&#xff1a; 因为QT里取的名字是&#xff1a; 于是下载everything搜索Nio&#xff0c;发现目录为/home/nio/.config 虽然已经下载了everything找到了&#xff0c;但是发现…

fyne常用内置颜色

常用内置颜色 在theme包里有一个关于颜色的color.go 常用颜色如下: theme.PrimaryColor() theme.WarningColor() theme.SuccessColor() theme.ErrorColor() theme.ShadowColor() theme.HyperlinkColor()最终这些会返回color.Color接口。 效果图: theme.HyperlinkColor()和t…

VTK- 面绘制体绘制

在VTK中&#xff0c;面绘制&#xff08;Surface Rendering&#xff09;和体绘制&#xff08;Volume Rendering&#xff09;是两种常见的三维数据可视化方法。面绘制和体绘制是计算机图形学中用于三维数据可视化的重要技术&#xff0c;尤其在医学成像、科学可视化和计算机辅助设…

Android广播机制

简介 某个网络的IP范围是192.168.0.XXX&#xff0c;子网 掩码是255.255.255.0&#xff0c;那么这个网络的广播地址就是192.168.0.255。广播数据包会被发送到同一 网络上的所有端口&#xff0c;这样在该网络中的每台主机都将会收到这条广播。为了便于进行系统级别的消息通知&…

游戏行业情报 | 手机玩3A终是空想?iOS版3A大作销量滑铁卢

2023年9月的苹果发布会上&#xff0c;苹果宣布iPhone15 Pro系列首发配备的A17 Pro芯片将能够支持3A游戏的游玩&#xff0c;随着该系列设备的发布&#xff0c;《生化危机 4》、《生化危机&#xff1a;村庄》、《死亡搁浅》和《刺客信条&#xff1a;幻景》等大作先后登陆iOS平台。…

Qt 使用 QZipReader 解压文件

Qt 使用 QZipReader 解压文件 文章目录 Qt 使用 QZipReader 解压文件摘要关于 QZipReader使用 QZipReader代码解释&#xff1a; 快速解 extractAll 关键字&#xff1a; Qt、 QZipReader、 extractAll、 Zip、 解压缩 摘要 每日一坑&#xff0c;坑坑难过&#xff0c;今日在…

2024年度 | 推荐PC端时间规划、项目管理软件(最新)

PingCode&#xff1a;适用于IT团队的项目/任务管理。 https://pingcode.com/ Worktile&#xff1a;团队通用的任务规划工具。 https://worktile.com/ Todoist&#xff1a;个人任务管理工具&#xff0c;支持跨平台同步。 Todoist | 管理您工作和生活的To Do List Pomodoro Ti…

Android选择题界面的设计——线性布局实操

目录 任务目标任务分析任务实施 任务目标 使用TextView、Button、CheckBox等实现一个选择题界面&#xff0c;界面如图1所示。 图1 选择题界面效果图 任务分析 上述界面可以分解为上下两部分&#xff0c;上面部分可以使用横向的线性布局来完成&#xff0c;下面部分可以使用…

独家带你get懂印尼直播工具APP借助海外快手kwai短视频广告推广优势

独家带你get懂印尼直播工具APP借助海外快手kwai短视频广告推广优势 随着全球互联网的迅猛发展和移动互联网的普及&#xff0c;广告投放已经成为企业扩大品牌影响力、获取潜在客户的重要手段之一。在印尼这一充满活力的市场中&#xff0c;直播工具APP的广告投放尤为关键。海外快…

快速了解 | 企业代码签名证书怎么弄

企业代码签名证书是用于签名软件、驱动程序、代码库等的数字证书&#xff0c;它能够保证软件的完整性和来源的真实性&#xff0c;从而提升用户对软件的信任度&#xff0c;消除电脑系统对于“未知发布者”软件的安装拦截和弹窗警告&#xff0c;消除微软的SmartScreen提醒。 1、…

ArmPiPro-多人同时开发

V0.0 2024.07.04 ROS节点间的通信是分布式的&#xff0c;也就是节点可以运行在不同的”主机“上&#xff0c;这些主机包括安装在机器人上的主控&#xff08;Pi4&#xff09;、通过串口连接PI4的烧写有Serialros的MCU从控、负责视觉开发的VM1、负责移动的VM2、负责机械臂的VM3都…

【自适应滤波系列四】回声消除(Acoustic Echo Cancellation, AEC)信号模型及其本质

什么是回声 关于回声的产生与传播,凌逆战(https://www.cnblogs.com/LXP-Never)大佬在其博客中阐述得很详细,可以去看他的博客,下面部分图片来源于其博客 回声就是声音信号经过一系列反射之后,又听到了自己讲话的声音,这就是回声。一些回声是必要的,比如剧院里的音乐回声…

海豚调度监控:新增依赖缺失巡检,上游改动再也不用担心了!

&#x1f4a1; 本系列文章是 DolphinScheduler 由浅入深的教程&#xff0c;涵盖搭建、二开迭代、核心原理解读、运维和管理等一系列内容。适用于想对 DolphinScheduler了解或想要加深理解的读者。 祝开卷有益:) 用过 DolphinScheduler 的小伙伴应该都知道&#xff0c;Dolphin…

代理IP和VPN有什么区别?该怎么选择?

今天我们来聊聊很多人关心的一个问题——代理IP和VPN到底有什么区别&#xff1f;虽然它们听起来差不多&#xff0c;但其实有很大的不同。这篇文章&#xff0c;小编就带大家一起了解一下吧&#xff01; 什么是代理IP&#xff1f; 代理IP是一种通过代理服务器替换用户真实IP地址…

第3章.中央服务器的物联网模式--AI/ML集成

第3章.中央服务器的物联网模式 本章列出了由于存储和/或计算需求而部署在中央服务器上以及部署在边缘&#xff08;本地&#xff09;或云上的体系结构模式。 这些模式基于现场设备生成的数据提供见解&#xff0c;使用附加数据&#xff08;来自附加系统&#xff0c;如企业系统&am…

【数据结构】建堆的时间复杂度

一.向下调整建堆 1.二叉树层数与总节点个数关系 层数一定时&#xff0c;在二叉树节点个数最大的情况下&#xff0c;二叉树为满二叉树&#xff0c;如下图所示&#xff0c;可以清晰地看到在满二叉树中第h层有2^(h-1)个节点&#xff0c;总节点N就等于一个等比数列的求和&#xf…

6.基于SpringBoot的SSMP整合案例-业务层开发

目录 1.业务层标准开发 1.1接口定义 1.2实现类定义 1.3测试类定义 1.4小结&#xff1a; 2.业务层快速开发 2.1使用MyBatisP1us提供有业务层通用接口(ISerivce)与业务层通用实现类(ServiceImpl),t> 接口定义&#xff1a; 实现类定义&#xff1a; 测试类&#xff1a; …

AI绘画Stable Diffusion 超高分辨率扩图教程:ControlNet组件-Tile妙用,增强细节保持构图完整!

大家好&#xff0c;我是向阳 今天给大家分享如何用AI绘画工具Stable Diffusion 的 ControlNet Tile工具应用。ControlNet Tile模型能够在SD绘图过程中&#xff0c;实现高分辨率下实现高清扩图&#xff0c;并且避免出现图像分身现象&#xff0c;以及可以调整SD扩散生产过程噪声…