【Python机器学习系列】建立决策树模型预测小麦品种(案例+源码)

这是我的第314篇原创文章。

一、引言

        对于表格数据,一套完整的机器学习建模流程如下:

图片

      针对不同的数据集,有些步骤不适用,其中橘红色框为必要步骤,欢迎大家关注翻看我之前的一些相关文章。前面我介绍了机器学习模型的二分类任务和回归任务,接下来做一下机器学习的多分类系列,由于本系列案例数据质量较高,有些步骤跳过了,跳过的步骤将单独出文章总结!在Python中,可以使用Scikit-learn库来构建决策树分类模型进行多分类预测,本文以预测小麦品种为例,对这个过程做一个简要解读。

二、实现过程

2.1 准备数据

data = pd.read_csv(r'data.csv')
df = pd.DataFrame(data)
print(df.head())

df:

图片

2.2 提取目标变量

target = 'Type'
features = df.columns.drop(target)
print(data["Type"].value_counts()) # 顺便查看一下样本是否平衡

图片

2.3 划分数据集

# df = shuffle(df)
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)

2.4 归一化

# 此步可不做处理

2.5 模型的构建

model = DecisionTreeClassifier(max_depth=5)

2.6 模型的训练

model.fit(X_train, y_train)

2.7 模型的推理

y_pred = model.predict(X_test)
y_scores = model.predict_proba(X_test)
print(y_pred)

图片

2.8 模型的评价

acc = accuracy_score(y_test, y_pred) # 准确率acc
print(f"acc: \n{acc}")
cm = confusion_matrix(y_test, y_pred) # 混淆矩阵
print(f"cm: \n{cm}")
cr = classification_report(y_test, y_pred) # 分类报告
print(f"cr:  \n{cr}")

结果:

图片

print("----------------------------- precision(精确率)-----------------------------")
precision_score_average_None = precision_score(y_test, y_pred, average=None)
precision_score_average_micro = precision_score(y_test, y_pred, average='micro')
precision_score_average_macro = precision_score(y_test, y_pred, average='macro')
precision_score_average_weighted = precision_score(y_test, y_pred, average='weighted')
print('precision_score_average_None = ', precision_score_average_None)
print('precision_score_average_micro = ', precision_score_average_micro)
print('precision_score_average_macro = ', precision_score_average_macro)
print('precision_score_average_weighted = ', precision_score_average_weighted)print("\n\n----------------------------- recall(召回率)-----------------------------")
recall_score_average_None = recall_score(y_test, y_pred, average=None)
recall_score_average_micro = recall_score(y_test, y_pred, average='micro')
recall_score_average_macro = recall_score(y_test, y_pred, average='macro')
recall_score_average_weighted = recall_score(y_test, y_pred, average='weighted')
print('recall_score_average_None = ', recall_score_average_None)
print('recall_score_average_micro = ', recall_score_average_micro)
print('recall_score_average_macro = ', recall_score_average_macro)
print('recall_score_average_weighted = ', recall_score_average_weighted)print("\n\n----------------------------- F1-value-----------------------------")
f1_score_average_None = f1_score(y_test, y_pred, average=None)
f1_score_average_micro = f1_score(y_test, y_pred, average='micro')
f1_score_average_macro = f1_score(y_test, y_pred, average='macro')
f1_score_average_weighted = f1_score(y_test, y_pred, average='weighted')
print('f1_score_average_None = ', f1_score_average_None)
print('f1_score_average_micro = ', f1_score_average_micro)
print('f1_score_average_macro = ', f1_score_average_macro)
print('f1_score_average_weighted = ', f1_score_average_weighted)

结果:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/865137.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源模型应用落地-FastAPI-助力模型交互-WebSocket篇(六)

一、前言 使用 FastAPI 可以帮助我们更简单高效地部署 AI 交互业务。FastAPI 提供了快速构建 API 的能力,开发者可以轻松地定义模型需要的输入和输出格式,并编写好相应的业务逻辑。 FastAPI 的异步高性能架构,可以有效支持大量并发的预测请求,为用户提供流畅的交互体验。此外,F…

美术馆预约小程序的设计

管理员账户功能包括:系统首页,个人中心,展品信息管理,管理员管理,用户管理,美术馆管理,基础数据管理,论坛管理 微信端账号功能包括:系统首页,美术馆&#xff…

[C/C++] -- gdb调试与coredump

1.gdb调试 GDB(GNU 调试器)是一个强大的工具,用于调试程序。 安装 1. wget http://ftp.gnu.org/gnu/gdb/gdb-8.1.tar.gz 2. tar -zxvf gdb-8.1.1.tar.gz 3. cd gdb-8.1.1 4. ./configure 5. make 6. make install 基础用法 …

vue3.0(十六)axios详解以及完整封装方法

文章目录 axios简介1. promise2. axios特性3. 安装4. 请求方法5. 请求方法别名6. 浏览器支持情况7. 并发请求 Axios的config的配置信息1.浏览器控制台相关的请求信息:2.配置方法3.默认配置4.配置的优先级5.axios请求响应结果 Axios的拦截器1.请求拦截2.响应拦截3.移…

回流焊常见缺陷

不润湿(Nonwetting)/润湿不良(Poor Wetting) 通常润湿不良是指焊点焊锡合金没有很好的铺展开来,从而无法得到良好的焊点并直接影响到焊点的可靠性。 产生原因: 1. 焊盘或引脚表面的镀层被氧化,氧化层的存在阻挡了焊锡与镀层之间的接触; 2. 镀层厚度不够或是加工不良,很…

常见测试测量接口的比较:PXI、PXIe、PCI、VXI、GPIB、USB

详细比较了六种常见的测试测量接口:PXI、PXIe、PCI、VXI、GPIB、USB。每种接口都有其独特的特点和应用场景。通过比较它们的性能、带宽、模块化程度和应用领域,帮助工程师选择最适合其测试需求的接口类型。 1. PXI(PCI eXtensions for Instru…

uboot 编译时传递参数实现条件编译

KCFLAGS make ARCHarm KCFLAGS-DENV_DEBUG CROSS_COMPILEaarch64-linux-gnu-env/sf.c env_sf_save 加入调试信息 # saveenv Saving Environment to SPI Flash... env_sf_save (1) spi_flash_erase (2) spi_flash_write is40000 Erasing SPI flash...Writing to SPI flash.…

试用笔记之-Delphi xe 微信/支付宝支付源代码

首先delphi xe 微信/支付宝支付源代码下载: http://www.htsoft.com.cn/download/DelphiXEWeiXin_ZhiFuBao_ZhiFu.rar 解压后可以看到源代码 直接执行可执行文件:

大模型技术在辅助学习中的应用

大模型技术在辅助学习中的应用场景非常广泛,以下是一些典型示例。大模型技术在辅助学习中具有广阔的应用前景,可以为学生提供更加个性化、智能化和高效的学习体验。随着大模型技术的不断发展,我们可以期待在未来看到更多创新应用。北京木奇移…

【Python】已解决:ERROR: No matching distribution found for JPype1

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决:ERROR: No matching distribution found for JPype1 一、分析问题背景 在安装Python的第三方库时,有时会遇到“ERROR: No matching distribution fo…

前端技术(说明篇)

Introduction ##编写内容:1.前端概念梳理 2.前端技术种类 3.前端学习方式 ##编写人:贾雯爽 ##最后更新时间:2024/07/01 Overview 最近在广州粤嵌进行实习,项目名称是”基于Node实现多人聊天室“,主要内容是对前端界…

springboot图书馆座位预约系统-计算机毕业设计源码85670

目 录 摘要 1 绪论 1.1 选题背景与意义 1.2开发现状 1.3论文结构与章节安排 2 开发环境及相关技术介绍 2.1 MySQL数据库 2.2 Tomcat服务器 2.3 Java语言 2.4 SpringBoot框架介绍 3 图书馆座位预约系统系统分析 3.1 可行性分析 3.1.1 技术可行性分析 3.1.2 经济可…

【Qt】初识QtQt Creator

一.简述Qt 1.什么是Qt Qt 是⼀个 跨平台的 C 图形⽤⼾界⾯应⽤程序框架 。它为应⽤程序开发者提供了建⽴艺术级图形界⾯所需的所有功能。它是完全⾯向对象的,很容易扩展。Qt 为开发者提供了⼀种基于组件的开发模式,开发者可以通过简单的拖拽和组合来实现…

基于ESP32 IDF的WebServer实现以及OTA固件升级实现记录(三)

经过前面两篇的前序铺垫,对webserver以及restful api架构有了大体了解后本篇描述下最终的ota实现的代码以及调试中遇到的诡异bug。 eps32的实际ota实现过程其实esp32官方都已经基本实现好了,我们要做到无非就是把要升级的固件搬运到对应ota flash分区里面…

2.3 主程序和外部IO交互 (文件映射方式)----IO Server实现

2.3 主程序和外部IO交互 (文件映射方式)----IO Server C实现 效果显示 1 内存共享概念 基本原理:以页面为单位,将一个普通文件映射到内存中,达到共享内存和节约内存的目的,通常在需要对文件进行频繁读写时…

手写一个类似@RequestParam的注解(用来接收请求体的参数)

一、本文解决的痛点 按照大众认为的开发规范,一般post类型的请求参数应该传在请求body里面。但是我们有些post接口只需要传入一个字段,我们接受这种参数就得像下面这样单独创建一个类,类中再添加要传入的基本类型字段,配合Reques…

LLM指令微调Prompt的最佳实践(二):Prompt迭代优化

文章目录 1. 前言2. Prompt定义3. 迭代优化——以产品说明书举例3.1 产品说明书3.2 初始Prompt3.3 优化1: 添加长度限制3.4 优化2: 细节纠错3.5 优化3: 添加表格 4. 总结5. 参考 1. 前言 前情提要: 《LLM指令微调Prompt的最佳实践(一)&#…

nexus未开启匿名访问Anonymous Access,访问maven元数据maven-metadata,报401未授权Unauthorized错误

一、背景 下午在调试nexus的时候,其他同事不小心把匿名访问停用了,导致客户端android打包的时候,报错: Received status code 401 from server: Unauthorized。 访问http://192.168.xx.xx:8081/repository/public/com/xxx/xxxcor…