数据结构-----堆(完全二叉树)

 目录

前言

一.堆

1.堆的概念

2.堆的存储方式

二.堆的操作方法

1.堆的结构体表示

2.数字交换接口函数

3.向上调整(难点)

4.向下调整(难点)

5.创建堆

 6.堆的插入

 7.判断空

8.堆的删除

 9.获取堆的根(顶)元素

10.堆的遍历

 11.销毁堆

完整代码

三.堆的应用(堆排序)

1.算法介绍

2.基本思想

3.代码实现

4.算法分析


前言

         今天我们开始学习一种二叉树,没错,那就是完全二叉树,完全二叉树又叫做堆,在此之前我们简单介绍过了完全二叉树的概念(链接:数据结构-----树和二叉树的定义与性质_灰勒塔德的博客-CSDN博客),这种类型的二叉树又有什么特点呢?代码怎么去实现呢?应用有那些呢?下面就一起来看看吧!

一.堆

1.堆的概念

堆(heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象,物理层面上是一个数组,逻辑上是一个完全二叉树。堆总是满足下列性质:

  • 堆中某个结点的值总是不大于或不小于其父结点的值;

  • 堆总是一棵完全二叉树。

  • 满足任意父节点都大于子节点的称作为大堆

  • 满足任意子节点都大于父节点的称作为小堆

  • tip:(下文会以大堆的创建为示例)

如图所示:

 

2.堆的存储方式

堆的储存原则是从上到下,从左到右,也就是说先有上面的父节点才会有子节点,先有左子节点,才会有右子节点 ,所以堆可以去通过一个数组完整的表示出来,如下图所示:

二.堆的操作方法

以下是一个堆要实现的基本功能,下面我会一一去详细解释说明

void swap(DataType* a, DataType* b);//交换数据void Adjust_Up(DataType* data, int child, int n);//向上调整void Adjust_Down(DataType* data, int parent, int n);//向下调整void Heap_Create(Heap* hp, DataType* data, int n);//创建堆bool isEmpty(Heap* hp);//判断空void Heap_Insert(Heap* hp, DataType x);//堆的插入void Heap_Del(Heap* hp);//堆的删除操作DataType Heap_Root(Heap* hp);//获取根元素void Heap_show(Heap* hp);//堆的遍历void Heap_Destory(Heap* hp);//堆的销毁

1.堆的结构体表示

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#define Maxsize 50//顺序结构
//堆(完全二叉树)
typedef int DataType;	//定义数据的类型
typedef struct Heap
{int size;	//当前节点数量int capacity;	//最大容量DataType* data;	//数据储存地址
}Heap;

2.数字交换接口函数

//数据交换接口
void swap(DataType* a, DataType* b) {DataType temp = *a;*a = *b;*b = temp;
}

3.向上调整(难点)

        创建大堆时,向上调整的目的是,在有子节点位置的情况下,进行与父节点的大小比较,如果子节点大于父节点,那么就进行交换,然后新的子节点就是上一个的父节点,依次这样比较下去,最后到根节点为止,如图所示:

 代码实现:

//向上调整
void Adjust_Up(DataType* data, int child, int n) {int parent = (child - 1) / 2;while (child > 0) {//如果子节点大于父节点就进行数值交换,然后此时的子节点就是前一个父节点,再找到//新的父节点,继续进行同样的操作,直到根节点为止if (data[child] > data[parent]){swap(&data[child], &data[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}

4.向下调整(难点)

        同样的还有向下调整,如果有了当前的父节点位置,那么就要跟子节点进行比较,但是子节点有左和右子节点,所以左右子节点也要去比较,取到其中比较大的子节点与父节点比较,如果这个字节点大于父节点的话,那就进行数字交换,然后新的父节点就是上一个的子节点,依次往下遍历进行同样的操作。

代码实现: 

//向下调整
void Adjust_Down(DataType* data, int parent, int n) {int child = parent * 2 + 1;while (child <n ) {if (child+1 < n && data[child] < data[child+1]){//如果右子节点大于左子节点,那就child+1,选中到右子节点child++;}if (data[child] > data[parent]) {//同样的,有了当前父节点,然后找到子节点,进行向下遍历调整操作swap(&data[child], &data[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

5.创建堆

已有一个数组{ 5,1,2,3,6,4,8 },怎么把这个数组放入堆里面呢?同样的,空间申请去申请到一块连续的空间,然后依次把数据存入到这个数组里面去,最后进行向下调整,以达到堆的形式。

放入堆之后如下图所示: 

代码实现:

//创建堆
void Heap_Create(Heap* hp, DataType* data, int n) {assert(hp);hp->data = (DataType*)malloc(sizeof(DataType) * n);if (!hp->data) {printf("ERROR\n");exit(-1);}for (int i = 0; i < n; i++) {hp->data[i] = data[i];//赋值}hp->size = n;hp->capacity = Maxsize;for (int j = (n - 1) / 2; j >= 0; j--) {//创建完成了之后,就要进行向下调整Adjust_Down(hp->data, j ,hp->size);}
}

 6.堆的插入

堆的插入,就是在堆的最后面去添加一个元素,添加完成之后,就要去进行向上调整操作,如下图所示:

代码实现: 

//堆的插入
void Heap_Insert(Heap* hp, DataType x) {assert(hp);//如果此时的堆空间满了,那么就要去扩容空间if (hp->size == hp->capacity) {DataType* temp = (DataType*)realloc(hp->data,sizeof(DataType)  * (hp->capacity+1));//追加1个空间if (!temp) {printf("ERROR\n");exit(-1);}hp->data = temp;hp->data[hp->size] = x;hp->size++;hp->capacity++;}else{hp->data[hp->size] = x;hp->size++;}Adjust_Up(hp->data, hp->size - 1, hp->size);//插入后进行向上调整
}

 7.判断空

//判断空
bool isEmpty(Heap* hp) {assert(hp);return hp->size == 0;
}

8.堆的删除

堆的删除操作是删除掉根节点,过程是,先把最后一个节点与根节点进行交换,然后重新进行向下调整。(堆的删除操作,删除掉的是根节点!

代码实现: 

//堆的删除,删除根节点
void Heap_Del(Heap* hp) {assert(hp);if (!isEmpty(hp)) {swap(&hp->data[hp->size - 1], &hp->data[0]);//根节点和尾节点进行交换hp->size--;Adjust_Down(hp->data, 0, hp->size);//向下调整}
}

 9.获取堆的根(顶)元素

//获取堆顶元素
DataType Heap_Root(Heap* hp) {assert(hp);if (!isEmpty(hp))return hp->data[0];elseexit(0);
}

10.堆的遍历

堆的遍历就直接按照数组的顺序去遍历就行了,完全二叉树的逻辑上是从上到下,从左到右去遍历的,代码如下:

//输出堆元素(按照顺序)
void Heap_show(Heap* hp) {assert(hp);if (isEmpty(hp)) {printf("The Heap is etmpy\n");return;}for (int i = 0; i < hp->size; i++)printf("%d ", hp->data[i]);
}

 11.销毁堆

//堆的销毁
void Heap_Destory(Heap* hp) {assert(hp);hp->size = hp->capacity = 0;free(hp);//释放空间
}

完整代码

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#define Maxsize 50//顺序结构
//堆(完全二叉树)
typedef int DataType;	//定义数据的类型
typedef struct Heap
{int size;	//当前节点数量int capacity;	//最大容量DataType* data;	//数据储存地址
}Heap;//数据交换接口
void swap(DataType* a, DataType* b) {DataType temp = *a;*a = *b;*b = temp;
}//向上调整
void Adjust_Up(DataType* data, int child, int n) {int parent = (child - 1) / 2;while (child > 0) {//如果子节点大于父节点就进行数值交换,然后此时的子节点就是前一个父节点,再找到//新的父节点,继续进行同样的操作,直到根节点为止if (data[child] > data[parent]){swap(&data[child], &data[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//向下调整
void Adjust_Down(DataType* data, int parent, int n) {int child = parent * 2 + 1;while (child <n ) {if (child+1 < n && data[child] < data[child+1]){//如果右子节点大于左子节点,那就child+1,选中到右子节点child++;}if (data[child] > data[parent]) {//同样的,有了当前父节点,然后找到子节点,进行向下遍历调整操作swap(&data[child], &data[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//创建堆
void Heap_Create(Heap* hp, DataType* data, int n) {assert(hp);hp->data = (DataType*)malloc(sizeof(DataType) * n);if (!hp->data) {printf("ERROR\n");exit(-1);}for (int i = 0; i < n; i++) {hp->data[i] = data[i];//赋值}hp->size = n;hp->capacity = Maxsize;for (int j = (n - 1) / 2; j >= 0; j--) {//创建完成了之后,就要进行向下调整Adjust_Down(hp->data, j ,hp->size);}
}//判断空
bool isEmpty(Heap* hp) {assert(hp);return hp->size == 0;
}//堆的插入
void Heap_Insert(Heap* hp, DataType x) {assert(hp);//如果此时的堆空间满了,那么就要去扩容空间if (hp->size == hp->capacity) {DataType* temp = (DataType*)realloc(hp->data,sizeof(DataType)  * (hp->capacity+1));//追加1个空间if (!temp) {printf("ERROR\n");exit(-1);}hp->data = temp;hp->data[hp->size] = x;hp->size++;hp->capacity++;}else{hp->data[hp->size] = x;hp->size++;}Adjust_Up(hp->data, hp->size - 1, hp->size);//插入后进行向上调整
}//堆的删除,取出根节点
void Heap_Del(Heap* hp) {assert(hp);if (!isEmpty(hp)) {swap(&hp->data[hp->size - 1], &hp->data[0]);//根节点和尾节点进行交换hp->size--;Adjust_Down(hp->data, 0, hp->size);//向下调整}
}//获取堆顶元素
DataType Heap_Root(Heap* hp) {assert(hp);if (!isEmpty(hp))return hp->data[0];elseexit(0);
}//输出堆元素(按照顺序)
void Heap_show(Heap* hp) {assert(hp);if (isEmpty(hp)) {printf("The Heap is etmpy\n");return;}for (int i = 0; i < hp->size; i++)printf("%d ", hp->data[i]);
}//堆的销毁
void Heap_Destory(Heap* hp) {assert(hp);hp->size = hp->capacity = 0;free(hp);//释放空间
}

三.堆的应用(堆排序)

1.算法介绍

        堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

2.基本思想

利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。

① 将待排序的序列构造成一个最大堆,此时序列的最大值为根节点
② 依次将根节点与待排序序列的最后一个元素交换
③ 再维护从根节点到该元素的前一个节点为最大堆,如此往复,最终得到一个递增序列

3.代码实现

#include<stdio.h>
#include<assert.h>
//数据交换接口
void swap(int *a, int *b) {int temp = *a;*a = *b;*b = temp;
}//向下调整
void Adjust_Down(int* data, int parent, int n) {int child = parent * 2 + 1;while (child < n) {if (child + 1 < n && data[child] < data[child + 1]){//如果右子节点大于左子节点,那就child+1,选中到右子节点child++;}if (data[child] > data[parent]) {//同样的,有了当前父节点,然后找到子节点,进行向下遍历调整操作swap(&data[child], &data[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//堆排序算法
void Heap_sort(int* arr, int n) {assert(arr);for (int i = (n - 2) / 2; i >= 0; i--) {Adjust_Down(arr, i, n);}//先形成最大堆int end = n - 1;//从小到大排序while (end > 0) {swap(&arr[0], &arr[end]);Adjust_Down(arr, 0, end);end--;	//此时最后一个也就是当前的最大值已经排序好了}
}int main() {int a[9] = { 5,1,2,3,6,4,8,2,10 };Heap_sort(a, sizeof(a) / sizeof(int));for (int i = 0; i < sizeof(a) / sizeof(int); i++) {printf("%d ", a[i]);}
}
//输出
//1 2 2 3 4 5 6 8 10

4.算法分析

  • 平均时间复杂度:O(nlogn)
  • 最佳时间复杂度:O(nlogn)
  • 最差时间复杂度:O(nlogn)
  • 稳定性:不稳定

 以上就是本期的内容,我们下次见!

 分享一张壁纸:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/86501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何看待Unity新的收费模式?

文章目录 背景Unity的论点开发者的担忧如何看待Unity新的收费模式&#xff1f;1. 理解Unity的立场2. 考虑小型开发者3. 探索替代方案4. 对市场变化保持敏感5. 提高游戏质量 结论 &#x1f389; 如何看待Unity新的收费模式&#xff1f; ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1…

Jenkins “Trigger/call builds on other project“用法及携带参数

1.功能 “Trigger/call builds on other project” 功能是 Jenkins 中的一个特性&#xff0c;允许您在某个项目的构建过程中触发或调用另一个项目的构建。 当您在 Jenkins 中启用了 “Trigger/call builds on other project” 功能并配置了相应的触发条件后&#xff0c;当主项…

计算机视觉与深度学习-循环神经网络与注意力机制-Attention(注意力机制)-【北邮鲁鹏】

目录 引出Attention定义Attention-based model通俗解释应用在图像领域图像字幕生成&#xff08;image caption generation&#xff09;视频处理 序列到序列学习&#xff1a;输入和输出都是长度不同的序列 引出Attention 传统的机器翻译是&#xff0c;将“机器学习”四个字都学…

八大排序(二)快速排序

一、快速排序的思想 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法&#xff0c;其基本思想为&#xff1a;任取待排序元素序列中的某元素作为基准值&#xff0c;按照该排序码将待排序集合分割成两子序列&#xff0c;左子序列中所有元素均小于基准值&#xff0c;右…

【新版】系统架构设计师 - 案例分析 - 软件工程

个人总结&#xff0c;仅供参考&#xff0c;欢迎加好友一起讨论 文章目录 结构化分析SA数据流图DFD数据流图平衡原则答题技巧例题1例题2 面向对象的分析OOA用例图用例模型细化用例描述用例关系【包含、扩展、泛化】分析模型定义概念类确定类之间的关系类图与对象图实体类 - 存储…

【音视频】MP4封装格式

基本概念 使用MP4box.js查看MP4内部组成结构 整体结构 数据索引&#xff08;moov&#xff09;数据流包&#xff08;mdat&#xff09; 各个包的位置&#xff0c;大小&#xff0c;信息&#xff0c;时间戳&#xff0c;编码方式等全在数据索引 数据流包只有纯二进制码流数据 数据…

C++ - 红黑树 介绍 和 实现

前言 前面 学习了 AVL树&#xff0c;AVL树虽然在 查找方面始终拥有 O(log N &#xff09;的极高效率&#xff0c;但是&#xff0c;AVL 树在插入 ,删除等等 修改的操作当中非常的麻烦&#xff0c;尤其是 删除操作&#xff0c;在实现当中细节非常多&#xff0c;在实现上非常难掌控…

第52节:cesium 3DTiles模型特效+选中高亮(含源码+视频)

结果示例: 完整源码: <template><div class="viewer"><vc-viewer @ready="ready" :logo="false"><vc-navigation

云上亚运:所使用的高新技术,你知道吗?

作者简介&#xff1a;一名云计算网络运维人员、每天分享网络与运维的技术与干货。 公众号&#xff1a;网络豆云计算学堂 座右铭&#xff1a;低头赶路&#xff0c;敬事如仪 个人主页&#xff1a; 网络豆的主页​​​​​ 目录 前言 一.什么是云上亚运会 二.为什么要使用云…

【Newman+Jenkins】实施接口自动化测试

一、是什么Newman Newman就是纽曼手机这个经典牌子&#xff0c;哈哈&#xff0c;开玩笑啦。。。别当真&#xff0c;简单地说Newman就是命令行版的Postman&#xff0c;查看官网地址。 Newman可以使用Postman导出的collection文件直接在命令行运行&#xff0c;把Postman界面化运…

负载均衡原理及应用

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

AI AIgents时代 - (三.) AutoGPT和AgentGPT

前两篇讲解了Agent的原理和组件&#xff0c;这节我将给大家介绍两个agent项目&#xff0c;给出它们的工作原理和区别&#xff0c;并教大家亲手尝试使用 Agents&#x1f389; &#x1f7e2; AutoGPT&#x1f916;️ 我们的老朋友&#xff0c;之前文章也专门写过。AutoGPT 是一…

【C++杂货铺】一颗具有搜索功能的二叉树

文章目录 一、二叉搜索树概念二、二叉搜索树的操作2.1 二叉搜索树的查找2.2 二叉搜索树的插入2.3 二叉搜索树的删除 三、二叉搜索树的实现3.1 BinarySearchTreeNode&#xff08;结点类&#xff09;3.2 BinarySearchTree&#xff08;二叉搜索树类&#xff09;3.2.1 框架3.2.2 in…

108. 将有序数组转换为二叉搜索树

给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 示例 1&#xff1a; 输入&#xff1a;nums [-10,-3,0,5,9] 输…

【Spark】win10配置IDEA、saprk、hadoop和scala

终于&#xff0c;要对并行计算下手了哈哈哈。 一直讲大数据大数据&#xff0c;我单次数据处理量大概在1t上下&#xff0c;是过亿级的轨迹数据。 用python调用multiprogress编写的代码&#xff0c;用多线程也要一个多月跑完。 我对这个效率不太满意&#xff0c;希望能快一点再快…

Python_ithheima_第二阶段

第一章 01-初识对像 02 类的成员方法 03 类和对象 04 构造方法 05 魔术方法 06 封装 07 封装的课后练习题讲解 08 继承的基础语法 pass关键字的功能是“语法补全” 同名成员或方法&#xff0c;谁先来谁优先级高 09 复写父类成员和调用父类成员 10 变量的类型注解 11 函数和方法…

Qt---day4---9.20

qt完成时钟&#xff1a; 头文件&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPaintEvent> #include <QtDebug> #include <QPainter> #include <QTimerEvent> #include <QTime>QT_BEGIN_NAMESPACE names…

ROS2 的行为树 — 第 1 部分:解锁高级机器人决策和控制

一、说明 在复杂而迷人的机器人世界中&#xff0c;行为树&#xff08;BT&#xff09;已成为决策过程中不可或缺的一部分。它们提供了一种结构化、模块化和高效的方法来对机器人的行为进行编程。BT起源于视频游戏行业&#xff0c;用于控制非玩家角色&#xff0c;他们在机器人领域…

Kafka 常见问题

文章目录 kafka 如何确保消息的可靠性传输Kafka 高性能的体现利用Partition实现并行处理利用PageCache 如何提高 Kafka 性能调整内核参数来优化IO性能减少网络开销批处理数据压缩降低网络负载高效的序列化方式 kafka 如何确保消息的可靠性传输 消费端弄丢了数据 唯一可能导致…

MinGW相关错误

1、go编译c报错 cc1.exe: sorry, unimplemented: 64-bit mode not compiled in 参考&#xff1a;BeifangCc go编译c报错 cc1.exe: sorry, unimplemented: 64-bit mode not compiled in 说明当前gcc是32位&#xff0c;无法在当前64位机器上正常工作&#xff0c;需要更新gcc 下载…