6 矩阵相关案例

矩阵计算在CUDA中的应用是并行计算领域的典型场景 ;

矩阵算法题通常涉及线性代数的基础知识,以及对数据结构和算法的深入理解。解决这类问题时,掌握一些核心思想和技巧会非常有帮助。以下是一些常见的矩阵算法题解题思想:

  1. 动态规划:矩阵链乘法问题是一个典型的例子,它要求找出最优的括号化方式来最小化乘法次数。动态规划通过构建一个表来存储子问题的解,从而避免重复计算,达到高效求解的目的。

  2. 分治策略:在处理大规模矩阵运算时,如大矩阵乘法,可以考虑分治法,即将大矩阵分割成小矩阵,先计算小矩阵的乘积,再合并结果。Strassen算法就是一个经典的分治算法,它将矩阵分为四个子矩阵,通过7次较小矩阵的乘法来计算原矩阵的乘积,而非传统的8次。

  3. 空间换时间:预计算和缓存技术可以用来加速某些类型的矩阵操作,例如计算矩阵的幂。通过预先计算并存储中间结果,后续计算可以复用这些结果,减少重复计算,尽管这可能会增加内存消耗。

  4. 位运算:在处理特殊类型的矩阵(如稀疏矩阵或二进制矩阵)时,位运算可以极大地提高效率。例如,利用位运算进行集合运算(交、并、差)可以比传统循环更快。

  5. 迭代与递归:在解决某些矩阵问题时,如计算矩阵的特征值、行列式或幂,迭代法和递归法可以提供不同的解决方案。迭代通常用于连续逼近问题,而递归则常用于分解问题为更小规模的相似问题。

  6. 利用矩阵特性:理解和利用矩阵的性质(如对称性、正定性、稀疏性)可以简化算法设计。例如,对称矩阵的乘法可以优化存储和计算,稀疏矩阵则可以通过压缩存储格式来节省空间和计算资源。

  7. 线性代数变换:诸如LU分解、QR分解、奇异值分解(SVD)等线性代数中的矩阵分解技术,可以将复杂问题转化为更易于处理的形式。这些方法在解决逆矩阵、最小二乘问题、特征值问题等方面非常有效。

73. 矩阵置零

给定一个 m x n 的矩阵,如果一个元素为 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法

思想:

既然要对矩阵中为零的元素的同行、同列都要置为0;

简单的:记住元素0 的行以及列;

在Python中,列表(list)的拷贝可以通过两种主要方式实现:浅拷贝(shallow copy)和深拷贝(deep copy)。这两种拷贝方式的主要区别在于它们处理列表中嵌套对象(如子列表或其他可变对象)的方式。

浅拷贝:里面有复杂结构的不会被拷贝;

浅拷贝创建了一个新列表,但这个新列表中的元素仍然是原列表中元素的引用。这意味着,如果原列表中含有其他可变对象(如子列表),新列表中的对应元素会指向相同的子列表对象。因此,修改新列表中的子列表会影响到原列表中的相应子列表。

浅拷贝可以通过以下方法实现:

  • 使用列表的 copy() 方法:new_list = original_list.copy()
  • 使用切片操作:new_list = original_list[:]

深拷贝:里面有复杂结构的也会被拷贝;

深拷贝则不仅创建列表的新副本,还会递归地拷贝列表中所有层级的元素,为所有嵌套的对象创建新的独立副本。因此,修改深拷贝得到的新列表中的任何元素,都不会影响到原列表或其嵌套对象。

深拷贝可以通过以下方法实现:

  • 使用 copy 模块的 deepcopy() 函数:import copy; new_list = copy.deepcopy(original_list)
import copy
class Solution:def setZeroes(self, matrix: List[List[int]]) -> None:"""Do not return anything, modify matrix in-place instead."""rows = []cols = []for i in range(len(matrix)):for j in range(len(matrix[0])):if matrix[i][j] == 0:rows.append(i) cols.append(j)for row,col in zip(rows,cols):matrix[row] = [0] * len(matrix[0])for z in range(len(matrix)):matrix[z][col] = 0

54. 螺旋矩阵

这个题目我遇到很多次了,真的是让我又爱又恨呢,孽缘啊!值的多看看几遍的题目;

给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。

思想:

到底怎么走的呢:

根据题目示例 matrix = [[1,2,3],[4,5,6],[7,8,9]] 的对应输出 [1,2,3,6,9,8,7,4,5] 可以发现,顺时针打印矩阵的顺序是 “从左向右、从上向下、从右向左、从下向上” 循环。

因此,考虑设定矩阵的 “左、上、右、下” 四个边界,模拟以上矩阵遍历顺序。

算法流程:
1 空值处理: 当 matrix 为空时,直接返回空列表 [] 即可。
2 初始化: 矩阵 左、右、上、下 四个边界 l , r , t , b ,用于打印的结果列表 res 。
3 循环打印: “从左向右、从上向下、从右向左、从下向上” 四个方向循环打印。

  1. 根据边界打印,即将元素按顺序添加至列表 res 尾部。
  2. 边界向内收缩 1 (代表已被打印)。
  3. 判断边界是否相遇(是否打印完毕),若打印完毕则跳出。

4 返回值: 返回 res 即可。

class Solution:def spiralOrder(self, matrix: List[List[int]]) -> List[int]:if not matrix:return []l,r,t,b,res = 0,len(matrix[0])-1,0,len(matrix)-1,[]while True:for i in range(l,r+1): res.append(matrix[t][i])t+=1if t>b:breakfor i in range(t,b+1): res.append(matrix[i][r])r-=1if l>r:breakfor i in range(r,l-1,-1): res.append(matrix[b][i])b-=1if t>b:breakfor i in range(b,t-1,-1): res.append(matrix[i][l])l+=1if l>r:breakreturn res

48. 旋转图像

MD! 这个题目,让我想到了在做计算机视觉时图像赠强!

给定一个 × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

先转置,然后把每一列翻转;

这个想法,我最想到的就是把矩阵转置了;然后看了一下,知道了答案是什么!

 zip(*matrix) = 矩阵的列转置;

        在Python中,zip(*matrix) 是一种常用的操作,尤其在处理多维数组(如矩阵)时。这里的 matrix 假定是一个二维列表(即列表的列表),用于表示一个矩阵。星号(*)在函数调用中的作用是 unpacking(解包),它将矩阵的每一行作为单独的参数传递给 zip 函数。

    zip 函数的基本功能是将多个可迭代对象(在这个上下文中是矩阵的行)对应位置的元素配对,形成一个元组的迭代器。当应用于二维列表(矩阵)时,zip(*matrix) 的效果是将矩阵的列转置。也就是说,它会把矩阵的每一列元素收集起来,形成新的元组,这些元组组成的迭代器实质上代表了原矩阵的转置。

class Solution:def rotate(self, matrix: List[List[int]]) -> None:"""Do not return anything, modify matrix in-place instead."""for i in range(len(matrix)):for j in range(i, len(matrix[0])):matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]for i in range(len(matrix)):matrix[i] = matrix[i][::-1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/864280.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树遍历学习

前序遍历: 遍历顺序是根节点,左子树,右子树 中序遍历的顺序是左子树、根节点、右子树 后序遍历的顺序是左子树、右子树、根节点。 /*** Description: 递归 实现 二叉树的 先中后序* Author: wule* Date: 2024/7/1 13:44*/ public class Erchashu {/*** 定…

pytorch nn.Embedding 用法和原理

nn.Embedding 是 PyTorch 中的一个模块,用于将离散的输入(通常是词或子词的索引)映射到连续的向量空间。它在自然语言处理和其他需要处理离散输入的任务中非常常用。以下是 nn.Embedding 的用法和原理。 用法 初始化 nn.Embedding nn.Embed…

LeetCode 1321, 209, 102

目录 1321. 餐馆营业额变化增长题目链接表要求知识点思路代码 209. 长度最小的子数组题目链接标签暴力法思路代码 滑动窗口思路代码 102. 二叉树的层序遍历题目链接标签思路代码 1321. 餐馆营业额变化增长 题目链接 1321. 餐馆营业额变化增长 表 表Customer的字段为custome…

使用Python实现学生管理系统

文章目录 1. 系统概述2. 系统功能3. 实现细节3.1 初始化学生列表3.2 添加学生3.3 显示所有学生3.4 查找学生3.5 删除学生3.6 主菜单 4. 运行系统 在本文中,我们将使用Python编程语言来开发一个简单的学生管理系统。该系统将允许用户执行基本的学生信息管理操作&…

嵌入式UI开发-lvgl+wsl2+vscode系列:5、事件(Events)

一、前言 这节进行事件的总结,通过事件回调方式将用户和ui的交互行为绑定组合起来。 二、事件示例 1、示例1(点击事件) #include "../lv_examples.h" #if LV_BUILD_EXAMPLES && LV_USE_SWITCHstatic void event_cb(lv_…

Chapter8 透明效果——Shader入门精要学习笔记

一、基本概念 在Unity中通常使用两种方法来实现透明效果 透明度测试(无法达到真正的半透明效果)透明度混合(关闭了深度写入) 透明度测试 基本原理:设置一个阈值,只要片元的透明度小于阈值,就…

全球AI新闻速递7.1

全球AI新闻速递 1.科大讯飞发布讯飞星火 V4.0。 2.成都人形机器人创新中心:基于视觉扩散架构的人形机器人任务生成式模型 R-DDPRM。 3.安徽省人形机器人产业创新中心获批,将打造国内首创、世界领先研究基地。 4.亳州牵手华为打造华佗中医药大模型。 …

[论文精读]Variational Graph Auto-Encoders

论文网址:[1611.07308] Variational Graph Auto-Encoders (arxiv.org) 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎…

DL/T 645与modbus协议是否兼容,有何关系?

不兼容。645是电表协议,modbus是通用控制协议,两个是平行关系,两个协议都可以使用485通信协议(物理接口协议)进行传输,或传输介质与物理接口相同,软件协议不同。 Modbus有以下三种通信模式 在…

ARM功耗管理软件之时钟电源树

安全之安全(security)博客目录导读 思考:功耗管理软件栈及示例?WFI&WFE?时钟&电源树?DVFS&AVS? 目录 一、时钟&电源树简介 二、时钟树示例 三、电源树示例 一、时钟&电源树简介 时钟门控与自…

人工智能与机器学习原理精解【1】

文章目录 Rosenblatt感知器基础收敛算法算法概述算法步骤关键点说明总结 C实现要点代码 参考文献 Rosenblatt感知器 基础 感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类…

【技术路线选择】:Qt or macOS/iOS ?

【技术路线选择】:Qt or macOS/iOS ? 【Question 1】: I have more than two years of experience developing with the following skills: Qt C and macOS/iOS development. Im interested in pursuing a software engineering career and would …

Victor CMS v1.0 SQL 注入漏洞(CVE-2022-28060)

前言 CVE-2022-28060 是 Victor CMS v1.0 中的一个SQL注入漏洞。该漏洞存在于 /includes/login.php 文件中的 user_name 参数。攻击者可以通过发送特制的 SQL 语句,利用这个漏洞执行未授权的数据库操作,从而访问或修改数据库中的敏感信息。 漏洞详细信…

论文阅读_优化RAG系统的检索

英文名称: The Power of Noise: Redefining Retrieval for RAG Systems 中文名称: 噪声的力量:重新定义RAG系统的检索 链接: https://arxiv.org/pdf/2401.14887.pdf 作者: Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campag…

半导体中名词“wafer”“chip”“die”中文名字和用途

①wafer——晶圆 wafer 即为图片所示的晶圆,由纯硅(Si)构成。一般分为6英寸、8英寸、12英寸规格不等,晶片就是基于这个wafer上生产出来的。晶圆是指硅半导体集成电路制作所用的硅晶片,由于其形状为圆形,故称为晶圆;在硅晶片上可加…

App测试技术(纯理论)

之前我们也学习过一些普通用例的设计, 如功能, 性能, 安全性, 兼容性, 易用性, 界面的测试用例设计, 之前我们讲的基本都是对于Web应用而言的, 这里我们来讲一下移动端的App测试用例设计. 功能方面 安装&卸载测试 这是只属于App的一类测试, 再平常我们使用移动设备(手机…

php 命令行模式详解

PHP 的命令行模式(Command Line Interface, CLI)是 PHP 的一个特定版本或运行时配置,它允许 PHP 脚本在没有 Web 服务器的情况下直接在命令行环境中执行。CLI 版本的 PHP 通常不包含 CGI 或者其他 web server 接口,因此更轻量级&a…

Redis的使用(一)概述

1.绪论 redis是一款用c编写的kv数据库,它具有丰富的数据类型,并且执行原子操作,自带数持久化,并且实现了集群部署等功能,我们来看看它有哪些特点: 1.提供了丰富的数据结构,比如string,list&am…

【第11章】MyBatis-Plus条件构造器(上)

文章目录 前言一、功能详解1. allEq2. eq3. ne4. gt5. ge6. lt7. le8. between9. notBetween10. like11. notLike12. likeLeft13. likeRight14. notLikeLeft15. notLikeRight16. isNull17. in18. notIn19. inSql20. notInSql21. eqSqlSince 3.5.622. gtSql Since 3.4.3.223. ge…