AI大模型的崛起:第四次工业革命的前奏?

在当今这个信息爆炸的时代,人工智能(AI)大模型的崛起引起了广泛的关注和讨论。有人将其视为第四次工业革命的前奏,然而,这真的可能吗?本文将探讨这一问题,并对中国AI大模型的发展进行简要分析。

首先,让我们回顾一下前三次工业革命的特点。每一次工业革命都是由一系列理论的突破和实践的创新所推动的。第一次工业革命,牛顿等人的力学理论为工业生产提供了基础;第二次工业革命,麦克斯韦的电磁理论为电力的广泛应用打下了基础;第三次工业革命,爱因斯坦和波尔的相对论和量子力学理论,为现代信息技术的发展奠定了基石。

9f5a206098e839d5edd930ceab15ea77.jpeg 然而,当我们谈论第四次工业革命时,我们似乎缺乏一个明确的理论基础。人工智能的发展虽然迅猛,但其背后的理论并没有像前三次工业革命那样具有划时代的意义。那么,我们是否可以认为AI大模型的兴起就是第四次工业革命的开始呢?

中国在AI领域的发展速度令人瞩目,众多AI大模型相继问世,并在国际排行榜上占据了一席之地。这无疑是中国科技实力的体现,也是中国在全球科技竞争中的重要一步。但是,我们也应该清醒地认识到,AI大模型的成功并不意味着我们已经站在了第四次工业革命的门槛上。

在科学界,理论的创新和突破往往是渐进的,需要长时间的积累和沉淀。AI领域的理论发展同样需要时间,需要更多的科学家和研究者去探索和验证。我们不能简单地将AI大模型的成功与牛顿、麦克斯韦、爱因斯坦等人的理论成就相提并论。

此外,我们还需要考虑到AI大模型在实际应用中面临的挑战。虽然它们在某些领域表现出色,但在理解复杂情境、处理模糊信息等方面仍有局限。这些局限性表明,AI技术还有很长的路要走,才能真正成为推动社会进步的力量。

总之,AI大模型的崛起无疑是人工智能领域的一个重要里程碑,但将其视为第四次工业革命的开始可能还为时尚早。我们需要更多的理论创新和实践探索,才能真正开启一个新的工业时代。同时,我们也应该保持谦逊和开放的态度,不断学习和借鉴世界各地的先进经验,共同推动人类社会的进步。

这篇文章已经超过了600字,对AI大模型的讨论进行了深入的分析,并提出了对第四次工业革命的思考。希望这篇文章能够引发读者对AI技术未来发展的更多思考。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/863753.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis第一节

目录 1. 简介2. 配置3. doing3.1 创建一个表3.2 打开IDEA,创建一个maven项目3.3 导入依赖的jar包3.4 创建entity3.5 编写mapper映射文件(编写SQL)3.6 编写主配置文件3.7 编写接口3.8 测试 参考链接 1. 简介 它是一款半自动的ORM持久层框架,具有较高的SQ…

Qt:4.信号和槽

目录 1.信号源、信号和槽: 2.Qt类的继承关系: 3.自定义槽函数: 4.第一种信号和槽的连接的方法: 5.第二种信号和槽的连接的方法: 6.自定义信号: 7.发射信号: 8.信号和槽的传参:…

神经网络在机器学习中的应用:手写数字识别

机器学习是人工智能的一个分支,它使计算机能够从数据中学习并做出决策或预测。神经网络作为机器学习的核心算法之一,因其强大的非线性拟合能力而广泛应用于各种领域,包括图像识别、自然语言处理和游戏等。本文将介绍如何使用神经网络对MNIST数…

《昇思25天学习打卡营第17天 | 昇思MindSporeCycleGAN图像风格迁移互换》

17天 本节学习了CycleGAN图像风格迁移互换。 CycleGAN即循环对抗生成网络,该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移,可以通俗地理解为图像风格迁移。其实在 CycleGAN 之前&a…

WP黑格导航主题BlackCandy

BlackCandy-V2.0全新升级!首推专题区(推荐分类)更多自定义颜色!选择自己喜欢的色系,焕然一新的UI设计,更加扁平和现代化! WP黑格导航主题BlackCandy

计算机科学基础简单介绍(1—6)

计算机影响了我们生活的方方面面,在我们这个时代完全渗透了我们的生活。 最早是算盘、星盘、时钟、尺卡等古老的计算工具,后来出现了进步计算机,类似与汽车里程表的一种机械工具,但是他也是手工制品。经过历史的演变与发展&#x…

gbase 8c分布式升级步骤

GBase 8c 多模多态企业级分布式数据库具备高性能、高可用、弹性伸缩、高安全性等特性,可以部署在物理机、虚拟机、容器、私有云和公有云,为关键行业核心系统、互联网业务系统和政企业务系统提供安全、稳定、可靠的数据存储和管理服务。GBase 8c支持行存、…

大数据之路 读书笔记 Day2

大数据之路 读书笔记 Day2 日志采集——浏览器的页面采集 一、分类 #mermaid-svg-8c9sRexRDdSB9pWA {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-8c9sRexRDdSB9pWA .error-icon{fill:#552222;}#mermaid-svg-8c9…

【python爬虫实战】爬取豆瓣top250(网站有反爬虫机制肿么办)

关于请求头headers: 值得注意的是,与上一篇 :​​​​​​【python爬虫实战】爬取书店网站的 书名&价格(注释详解)-CSDN博客 爬取书名不同,这次爬取豆瓣网站必须使用“请求头headers”,不然将没有输…

js使用异步方法(promise)返回回调参数内的值,

需求分析 使用回调方式的异步方法时,需要返回异步操作的结果,这个时候就不能直接在回调函数内返回值,因为回调函数需要等待异步操作结束才执行,而同步调用返回值时,异步操作没有结束,回调函数就没有执行完成…

每天五分钟深度学习框架pytorch:tensor向量之间常用的运算操作

本文重点 在数学中经常有加减乘除运算,在tensor中也不例外,也有类似的运算,本节课程我们将学习tensor中的运算 常见运算 加法+或者add import torch import numpy as np a=torch.rand(16,3,28,28) b=torch.rand(1,3,28,28) print(a+b) import torch import numpy as np a…

力扣SQL50 连续出现的数字 distinct

Problem: 180. 连续出现的数字 👨‍🏫 力扣官解 Code SELECT DISTINCTl1.Num AS ConsecutiveNums FROMLogs l1,Logs l2,Logs l3 WHEREl1.Id l2.Id - 1AND l2.Id l3.Id - 1AND l1.Num l2.NumAND l2.Num l3.Num ;

用Lobe Chat部署本地化, 搭建AI聊天机器人

Lobe Chat可以关联多个模型,可以调用外部OpenAI, gemini,通义千问等, 也可以关联内部本地大模型Ollama, 可以当作聊天对话框消息框来集成使用 安装方法参考: https://github.com/lobehub/lobe-chat https://lobehub.com/zh/docs/self-hosting/platform/…

DELL:利用大语言模型(LLM)生成评论与解释,革新虚假信息检测

ACL 2024 DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection https://arxiv.org/abs/2402.10426https://arxiv.org/abs/2402.10426 1.概述 大型语言模型(LLM)虽在诸多领域显示出色性能,但在直接应用于新闻真实性鉴别时,面临两大核心挑…

百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现

百亿级存储架构: ElasticSearchHBase 海量存储架构与实现 尼恩:百亿级数据存储架构起源 在40岁老架构师 尼恩的读者交流群(50)中,经常性的指导小伙伴们改造简历。 经过尼恩的改造之后,很多小伙伴拿到了一线互联网企业如得物、阿…

多平台自动养号【开心版】偷偷使用就行了!

大家好,今天我无意间发现了一款【多平台自动养号工具】,看了一下里面的功能还是挺全面的,包含了【抖音,快手,小红薯】还有一些截流功能 虽然这款工具功能强大,但美中不足的是需要付费的。但别担心&#xf…

Linux操作系统学习:day08

内容来自:Linux介绍 视频推荐:Linux基础入门教程-linux命令-vim-gcc/g -动态库/静态库 -makefile-gdb调试 目录 day0853、命令和编辑模式之间的切换54、命令模式到末行模式的切换与末行模式下的保存退出命令模式到末行模式的切换保存退出 55、末行模式…

Spring Boot项目的两种发布方式

一、通过jar包发布 1、在pom中添加一个SpringBoot的构建的插件 <build><plugins><plugin><groupId>org.springframework.boot</groupId><!--自动检测项目中的 main 函数--><artifactId>spring-boot-maven-plugin</artifactId>…

【硬件视界2】CPU和GPU:计算机架构的双子星

名人说&#xff1a;莫听穿林打叶声&#xff0c;何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 本篇笔记整理&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 1、CPU (中央处理器)①主要作用②特点 2、 GPU (图形处理…

Jmeter下载、安装及配置

1 Jmeter介绍 Jmeter是进行负载测试的工具&#xff0c;可以在任何支持Java虚拟机环境的平台上运行&#xff0c;比如Windows、Linux、Mac。 Jmeter模拟一组用户向目标服务器发送请求&#xff0c;并统计目标服务器的性能信息&#xff0c;比如CPU、memory usage。 2 Jmeter下载 …