神经网络在机器学习中的应用:手写数字识别

        机器学习是人工智能的一个分支,它使计算机能够从数据中学习并做出决策或预测。神经网络作为机器学习的核心算法之一,因其强大的非线性拟合能力而广泛应用于各种领域,包括图像识别、自然语言处理和游戏等。本文将介绍如何使用神经网络对MNIST数据集中的手写数字进行识别。

❤❤❤喜欢的点个关注吧~~~

神经网络基础

神经网络由多个层组成,每层包含多个神经元。每个神经元对输入数据进行加权求和,然后通过一个激活函数来生成输出。最常见的激活函数包括ReLU、Sigmoid和Tanh。神经网络通过前向传播计算输出,并通过反向传播算法调整权重,以此来最小化损失函数。

手写数字识别问题

        MNIST数据集是一个包含了70000个手写数字的图像集,每个图像是一个28x28像素的灰度图,标签是0到9的数字。这个数据集通常用于训练和测试图像识别模型。

使用TensorFlow构建神经网络

        TensorFlow是一个开源的机器学习库,广泛用于神经网络的构建和训练。以下是使用TensorFlow和Keras API构建一个简单的神经网络模型来识别MNIST手写数字的示例代码。

import tensorflow as tf
from tensorflow.keras import layers, models# 下载MNIST数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 数据预处理
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(-1, 28, 28, 1)  # 添加单通道维度
x_test = x_test.reshape(-1, 28, 28, 1)# 构建模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)

结果分析

        上述代码首先下载并预处理MNIST数据集,然后构建了一个包含卷积层、池化层和全连接层的神经网络模型。模型使用Adam优化器和稀疏分类交叉熵作为损失函数进行编译。经过5轮迭代训练后,模型在测试集上的准确率可以超过98%。

结论

        神经网络在图像识别任务中表现出色,通过简单的卷积神经网络结构,我们就能在MNIST数据集上达到很高的准确率。随着网络结构的复杂化和训练数据的增加,神经网络的性能还有进一步提升的空间。

        这篇文章和代码提供了一个神经网络在机器学习中应用的基本示例。神经网络的潜力巨大,通过不断的研究和开发,它们将在更多领域展现其强大的能力。

请注意,运行上述代码需要安装Python环境和TensorFlow库。您可以通过运行

pip install tensorflow

来安装TensorFlow。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/863749.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《昇思25天学习打卡营第17天 | 昇思MindSporeCycleGAN图像风格迁移互换》

17天 本节学习了CycleGAN图像风格迁移互换。 CycleGAN即循环对抗生成网络,该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移,可以通俗地理解为图像风格迁移。其实在 CycleGAN 之前&a…

WP黑格导航主题BlackCandy

BlackCandy-V2.0全新升级!首推专题区(推荐分类)更多自定义颜色!选择自己喜欢的色系,焕然一新的UI设计,更加扁平和现代化! WP黑格导航主题BlackCandy

【高考志愿】水利工程

目录 一、专业概述 二、主要专业课程与实习实训 三、就业方向 四、选择水利工程专业的注意事项 五、未来职业发展 六、水利工程专业排名 高考志愿选择水利工程专业时,考生应综合考虑多方面因素。以下是对水利工程专业的详细介绍,以帮助考生做出更明…

Oracle内部bug导致的19c DG备库宕机

Oracle内部bug导致的19c DG备库宕机 报错信息收集原因与受影响版本Workaround与解决办法报错信息收集 数据库版本: SQL> select banner,banner_full,banner_legacy from v$version;BANNER ----------------------------------------------------------------------------…

计算机科学基础简单介绍(1—6)

计算机影响了我们生活的方方面面,在我们这个时代完全渗透了我们的生活。 最早是算盘、星盘、时钟、尺卡等古老的计算工具,后来出现了进步计算机,类似与汽车里程表的一种机械工具,但是他也是手工制品。经过历史的演变与发展&#x…

gbase 8c分布式升级步骤

GBase 8c 多模多态企业级分布式数据库具备高性能、高可用、弹性伸缩、高安全性等特性,可以部署在物理机、虚拟机、容器、私有云和公有云,为关键行业核心系统、互联网业务系统和政企业务系统提供安全、稳定、可靠的数据存储和管理服务。GBase 8c支持行存、…

第十四站:Java玫瑰金——移动开发的新篇章

Java作为一门历史悠久的编程语言,在移动开发领域尤其是Android平台上有着不可替代的地位。尽管Kotlin因其简洁性和现代特性在2017年被Google宣布为Android官方推荐的开发语言,Java依然保持着其在移动开发中的重要性。以下是Java在移动开发中的一些关键点…

大数据之路 读书笔记 Day2

大数据之路 读书笔记 Day2 日志采集——浏览器的页面采集 一、分类 #mermaid-svg-8c9sRexRDdSB9pWA {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-8c9sRexRDdSB9pWA .error-icon{fill:#552222;}#mermaid-svg-8c9…

【python爬虫实战】爬取豆瓣top250(网站有反爬虫机制肿么办)

关于请求头headers: 值得注意的是,与上一篇 :​​​​​​【python爬虫实战】爬取书店网站的 书名&价格(注释详解)-CSDN博客 爬取书名不同,这次爬取豆瓣网站必须使用“请求头headers”,不然将没有输…

js使用异步方法(promise)返回回调参数内的值,

需求分析 使用回调方式的异步方法时,需要返回异步操作的结果,这个时候就不能直接在回调函数内返回值,因为回调函数需要等待异步操作结束才执行,而同步调用返回值时,异步操作没有结束,回调函数就没有执行完成…

深入解析目标检测中的正负样本不平衡问题及其解决方案

目标检测是计算机视觉领域的核心任务之一,它旨在从图像或视频中识别和定位感兴趣的目标。然而,在实际应用中,目标检测算法常常面临正负样本不平衡问题,这会严重影响检测性能。本文将详细探讨正负样本不平衡问题的定义、成因、影响…

每天五分钟深度学习框架pytorch:tensor向量之间常用的运算操作

本文重点 在数学中经常有加减乘除运算,在tensor中也不例外,也有类似的运算,本节课程我们将学习tensor中的运算 常见运算 加法+或者add import torch import numpy as np a=torch.rand(16,3,28,28) b=torch.rand(1,3,28,28) print(a+b) import torch import numpy as np a…

力扣SQL50 连续出现的数字 distinct

Problem: 180. 连续出现的数字 👨‍🏫 力扣官解 Code SELECT DISTINCTl1.Num AS ConsecutiveNums FROMLogs l1,Logs l2,Logs l3 WHEREl1.Id l2.Id - 1AND l2.Id l3.Id - 1AND l1.Num l2.NumAND l2.Num l3.Num ;

用Lobe Chat部署本地化, 搭建AI聊天机器人

Lobe Chat可以关联多个模型,可以调用外部OpenAI, gemini,通义千问等, 也可以关联内部本地大模型Ollama, 可以当作聊天对话框消息框来集成使用 安装方法参考: https://github.com/lobehub/lobe-chat https://lobehub.com/zh/docs/self-hosting/platform/…

探索 Symfony 框架:工作原理、特点及技术选型

目录 1. 概述 2. Symfony 的工作原理 2.1 MVC 架构 2.2 前端控制器模式 2.3 路由机制 2.4 依赖注入容器 2.5 事件驱动架构 3. Symfony 的特点 3.1 高度可扩展性 3.2 强大的社区支持和生态系统 3.3 优秀的性能和可伸缩性 3.4 严格的代码规范和最佳实践 4. Symfony …

DELL:利用大语言模型(LLM)生成评论与解释,革新虚假信息检测

ACL 2024 DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection https://arxiv.org/abs/2402.10426https://arxiv.org/abs/2402.10426 1.概述 大型语言模型(LLM)虽在诸多领域显示出色性能,但在直接应用于新闻真实性鉴别时,面临两大核心挑…

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】013 - arch\arm\lib\crt0_64.S 汇编源码逐行详解

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】013 - arch\arm\lib\crt0_64.S 汇编源码逐行详解 一、arch\arm\lib\crt0_64.S 汇编源码 - 简单梳理及注释系列文章汇总:《【OpenHarmony4.1 之 U-Boot 源码深度解析】000 - 文章链接汇总》 本文链接:《【OpenHarmony4.1 之 …

百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现

百亿级存储架构: ElasticSearchHBase 海量存储架构与实现 尼恩:百亿级数据存储架构起源 在40岁老架构师 尼恩的读者交流群(50)中,经常性的指导小伙伴们改造简历。 经过尼恩的改造之后,很多小伙伴拿到了一线互联网企业如得物、阿…

多平台自动养号【开心版】偷偷使用就行了!

大家好,今天我无意间发现了一款【多平台自动养号工具】,看了一下里面的功能还是挺全面的,包含了【抖音,快手,小红薯】还有一些截流功能 虽然这款工具功能强大,但美中不足的是需要付费的。但别担心&#xf…

Linux操作系统学习:day08

内容来自:Linux介绍 视频推荐:Linux基础入门教程-linux命令-vim-gcc/g -动态库/静态库 -makefile-gdb调试 目录 day0853、命令和编辑模式之间的切换54、命令模式到末行模式的切换与末行模式下的保存退出命令模式到末行模式的切换保存退出 55、末行模式…