LLM探索:环境搭建与模型本地部署

前言

最近一直在炼丹(搞AIGC这块),突然发现业务代码都索然无味了…

上次发了篇AI画图的文章,ChatGPT虽然没法自己部署,但现在开源的LLM还是不少的,只要有一块差不多的显卡,要搞个LLM本地部署还是没问题的。

本文将介绍这以下两个国产开源LLM的本地部署

  • ChatGLM-6B
  • MOSS

本文先简单的把模型跑起来,后续将继续我近期在LLM方向的一些探索记录~

概念

开始之前,先来看看一些基础概念。

AIGC

引用以下 mbalib 的内容

AIGC(AI Generated Content) 即人工智能生成内容,又称“生成式AI”(Generative AI),被认为是继专业生产内容(PGC)、用户生产内容(UGC)之后的新型内容创作方式。

互联网内容生产方式经历了PGC——UGC——AIGC的过程。PGC(Professionally Generated Content)是专业生产内容,如Web1.0和广电行业中专业人员生产的文字和视频,其特点是专业、内容质量有保证。UGC(User Generated Content)是用户生产内容,伴随Web2.0概念而产生,特点是用户可以自由上传内容,内容丰富。**AIGC(AI Generated Content)**是由AI生成的内容,其特点是自动化生产、高效。随着自然语言生成技术NLG和AI模型的成熟,AIGC逐渐受到大家的关注,目前已经可以自动生成文字、图片、音频、视频,甚至3D模型和代码。

最近很多的ChatGPT、AI画图,就都属于这个领域。

LLM

引用以下 wikipedia 的内容

A large language model (LLM) is a language model consisting of a neural network with many parameters (typically billions of weights or more), trained on large quantities of unlabeled text using self-supervised learning or semi-supervised learning. LLMs emerged around 2018 and perform well at a wide variety of tasks. This has shifted the focus of natural language processing research away from the previous paradigm of training specialized supervised models for specific tasks.

中文也就是「大语言模型」,现在很火的ChatGPT就是这个LLM的代表,大模型有一个关键的属性:参数量,参数量的大小决定了大模型的能力(不能说是绝对的,但肯定是正相关)。

以下是常见LLM的参数量:

LLM名称参数量
ChatGPT 3.5175B
ChatGLM6B
MOSS16B
LLaMA7B/13B/33B/65B

篇幅关系只列举这几个,更多的可以看文后的参考资料。

搭建环境

硬件

首先要有一台搭载了NVIDIA显卡的Linux系统服务器/电脑。

显存需要达到8G及以上,不然跑不动~

系统推荐使用最新的Ubuntu(22.04)或者其衍生版,以下是我在测试过程中使用的两台服务器配置。

服务器1

  • CPU: Intel® Core™ i9-10940X CPU @ 3.30GHz
  • 内存:64G
  • 显卡:NVIDIA GeForce RTX 2080 Ti

服务器2

  • CPU:Intel® Xeon® Gold 5318Y CPU @ 2.10GHz x2
  • 内存:128G
  • 显卡: Tesla T4 x4

软件

说完了硬件,再看看软件。

驱动

首先,需要显卡驱动,Ubuntu系的发行版安装显卡驱动比喝水还容易,这就是为啥推荐炼丹用Ubuntu的理由。

PS:完全可以一键完成,不需要再去网上查什么复制了几百遍的博客然后下载一堆东西又是编译又是卸载nouveau啥的了~

Ubuntu桌面版可以直接用「软件更新」App一键安装显卡驱动。

Ubuntu服务器版本,使用 nvidia-detector 命令检测需要安装的驱动版本,示例:

$ nvidia-detector
nvidia-driver-530

使用 ubuntu-drivers list 获取可安装的驱动列表,示例:

$ ubuntu-drivers list
nvidia-driver-418-server, (kernel modules provided by nvidia-dkms-418-server)
nvidia-driver-530, (kernel modules provided by linux-modules-nvidia-530-generic-hwe-22.04)
nvidia-driver-450-server, (kernel modules provided by linux-modules-nvidia-450-server-generic-hwe-22.04)
nvidia-driver-515, (kernel modules provided by linux-modules-nvidia-515-generic-hwe-22.04)
nvidia-driver-470-server, (kernel modules provided by linux-modules-nvidia-470-server-generic-hwe-22.04)
nvidia-driver-525-server, (kernel modules provided by linux-modules-nvidia-525-server-generic-hwe-22.04)
nvidia-driver-515-server, (kernel modules provided by linux-modules-nvidia-515-server-generic-hwe-22.04)
nvidia-driver-510, (kernel modules provided by linux-modules-nvidia-510-generic-hwe-22.04)
nvidia-driver-525, (kernel modules provided by linux-modules-nvidia-525-generic-hwe-22.04)
nvidia-driver-470, (kernel modules provided by linux-modules-nvidia-470-generic-hwe-22.04)

然后使用 ubuntu-drivers install nvidia-driver-530 来安装驱动,示例:

$ ubuntu-drivers install nvidia-driver-530All the available drivers are already installed.

就这么简单

PS:当然非要自己去NVIDIA官网下载也可以,具体可以看看参考资料。

Python

搞AI,Python是必备的,但我们不直接使用系统的Python环境,而是使用conda来管理。

推荐使用 miniconda3 比 anaconda 轻量。

按照官网说明按照 miniconda3 之后,只需要使用以下命令即可创建指定版本的python环境

conda create -n 环境名称 python=3.10

如果遇到网络环境问题,可以参考我之前这篇文章,配置一下国内镜像:配置pip国内镜像加快python第三方库安装速度~

ChatGLM-6B

介绍

这是清华和智谱公司搞的开源LLM,截止本文撰写时,其在国产开源LLM里面算是天花板的存在了~

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。

硬件需求

量化等级最低 GPU 显存(推理)最低 GPU 显存(高效参数微调)
FP16(无量化)13 GB14 GB
INT88 GB9 GB
INT46 GB7 GB

本地部署

下载项目代码
git clone https://github.com/THUDM/ChatGLM-6B.git

PS:也可以使用我 fork 魔改的版本,主要做了以下修改:

  • 部署和模型微调默认开启多卡加速
  • 重写API接口,更直观

换成以下命令即可

git clone https://github.com/Deali-Axy/ChatGLM-6B.git
创建虚拟环境

建议使用 conda 管理

conda create -n chatglm python==3.8
安装依赖
cd ChatGLM-6B
conda activate chatglm
pip install -r requirements.txt
conda install cudatoolkit=11.7 -c nvidia

PS:没有安装 cudatoolkit 的话,会报 RuntimeError: Library cudart is not initialized 错误

但 issues 里也有人说可以通过使用CPU输出量化模型后直接调用的方式解决,暂未尝试。

issues 地址: github.com/THUDM/ChatG…

下载模型和启动

项目代码里有命令行和web界面两种demo,任意选一个运行,程序会自动从 huggingface 下载预训练模型。

PS: huggingface 的模型理论上是可以直接下载的,如果遇到网络问题,请自行使用代理或者从官方提供的某云盘下载模型。

# 命令行 demo
python cli_demo.py
# 使用 Gradio 实现的简单Web界面
python web_demo.py

Gradio 的默认端口是7860,可以通过在 launch() 方法里传入 server_port 参数自定义端口。

使用量化模型

如果显存没有13G以上,则无法运行FP16精度模型,只能运行量化后的模型,需要修改一下代码。

打开上述的 cli_demo.pyweb_demo.py 代码

找到以下加载模型的代码,修改一下参数

model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()

将上面的代码修改为下面这样以使用量化模型

# 按需修改,目前只支持 4/8 bit 量化
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).quantize(4).half().cuda()
运行效果

image

多卡加速

如果显卡多,可以使用多卡运行以加速推理。

依然是打开上述的 cli_demo.pyweb_demo.py 代码。

找到以下加载模型的代码

model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()

修改为

from utils import load_model_on_gpus
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=4)

num_gpus 参数为要使用的显卡数量

我看了 load_model_on_gpus 这个方法的代码,它是通过 auto_configure_device_map 方法把 transformer分成30层,然后再分配到指定数量的显卡上,没法像 CUDA_VISIBLE_DEVICES 环境变量一样通过显卡编号来指定,只能按顺序来分配。

如果机器上同时要运行其他模型,可以考虑先运行这个ChatGLM,再运行其他的,或者重写 auto_configure_device_map 方法,让其可以灵活指定显卡。

授权

模型不可以直接商用,据说商用需要购买一年180w的许可证。

MOSS

介绍

这个是复旦开源的大模型,使用下来和ChatGLM最大的区别是推理速度特别慢

MOSS是一个支持中英双语和多种插件的开源对话语言模型,moss-moon系列模型具有160亿参数,在FP16精度下可在单张A100/A800或两张3090显卡运行,在INT4/8精度下可在单张3090显卡运行。MOSS基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。

硬件需求

量化等级加载模型完成一轮对话(估计值)达到最大对话长度2048
FP1631GB42GB81GB
Int816GB24GB46GB
Int47.8GB12GB26GB

本地部署

下载代码
git clone https://github.com/OpenLMLab/MOSS.git
创建虚拟环境

建议使用 conda 管理

conda create -n moss python==3.8
安装依赖
cd MOSS
conda activate moss
pip install -r requirements.txt
conda install cudatoolkit=11.7 -c nvidia
下载模型和启动

项目代码里有命令行和web界面两种demo,任意选一个运行,程序会自动从 huggingface 下载预训练模型。

# 命令行 demo
python moss_cli_demo.py
# 使用 Gradio 实现的简单Web界面
python moss_web_demo_gradio.py
修改默认模型和多卡加速

因为MOSS对显存的要求比较高,因此默认用的是4位量化的模型,这里我使用一台4块T4的服务器来部署,所以直接使用FP16模型。

修改 moss_web_demo_gradio.py,找到以下代码

parser.add_argument("--model_name", default="fnlp/moss-moon-003-sft-int4",...)

default 参数改为 fnlp/moss-moon-003-sft

然后再设置一下多卡加速,把GPU参数设置为四个显卡的编号

parser.add_argument("--gpu", default="0,1,2,3", type=str)

然后启动,就可以看到四张显卡都吃满了

image

使用下来最大的感受就是慢,往往要一两分钟才能生成一个回答。

我看了下GitHub issues,有很多人也提出了同样的问题。两张A100还需要10s起步,100s左右的生成时间,看来短时间内是无解了,只能等官方优化了~

详见:

  • github.com/OpenLMLab/M…

授权

模型采用 GNU AFFERO GENERAL PUBLIC LICENSE 许可证,可以免费商用。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/863270.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

音视频开发32 FFmpeg 编码- 视频编码 h264 参数相关

1. ffmpeg -h 这个命令总不会忘记,用这个先将ffmpeg所有的help信息都list出来 C:\Users\Administrator>ffmpeg -h ffmpeg version 6.0-full_build-www.gyan.dev Copyright (c) 2000-2023 the FFmpeg developersbuilt with gcc 12.2.0 (Rev10, Built by MSYS2 pro…

单点登录(cookie+Redis)

1、什么是单点登录? Single Sign On简称SSo,只需要登录一次就可以在整个系统实现访问。 因为session的特性,是没有办法在多个服务系统之间实现数据的共享。 解决一个分布式session的问题。目前我们使用redis来实现分布式session。 1.1、新问题…

2000-2021年县域金融机构存贷款数据

2000-2021年县域金融机构存贷款数据 1、时间:2000-2021年 2、指标:统计年度、地区编码ID、县域代码、县域名称、所属地级市、所属省份、年末金融机构贷款余额/亿元、年末金融机构存款余额/亿元、年末城乡居民储蓄存款余额/亿元 3、来源:县…

[OtterCTF 2018]Graphic‘s For The Weak

恶意软件的图形中有些可疑之处。 软件图形 ???这里的恶意文件都是 vmware-tray.ex使用procdump转存进程的可执行文件 (可执行的)导出了 ,看文件里面是否存在 图片 volatility.exe -f .\OtterCTF.vmem --pro…

3.3V到5V的负电源产生电路(电荷泵电压反相器)SGM3204输出电流0.2A封装SOT23-6

前言 SGM3204 非稳压 200mA 电荷泵负电源产生电路,LCEDA原理图请访问资源 SGM3204电荷泵负电源产生电路 SGM3204电荷泵负电源产生电路 一般描述 SGM3204从 1.4V 至 5.5V 的输入电压范围产生非稳压负输出电压。 该器件通常由 5V 或 3.3V 的预稳压电源轨供电。由于…

网盘挂载系统-知识资源系统-私域内容展示系统

系统介绍: 存储:一共支持约30款云盘存储,其中包括主流的(百度网盘、阿里云盘、夸克云盘、迅雷云盘、蓝奏云、天翼云盘),部分展示 以及特别的(一刻相册、对象存储、又拍云存储、SFTP、MEGA 网盘…

【Linux】解锁并发:多线程同步技术详解与应用实践

文章目录 前言:1. 同步概念2. 条件变量:实现线程间同步的!2.1. 条件变量是什么?2.2. 认识条件变量接口 3. 写一个测试代码——验证线程的同步机制4. 生产消费模型5. 生产消费模型 条件变量6. 线程池7. 可重入 VS 线程安全7.1. 概…

leetcode-20-回溯-切割、子集

一、[131]分割回文串 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。 返回 s 所有可能的分割方案。 示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a","b"] ] 分析&…

运维锅总详解Nginx

本文尝试从Nginx特性及优缺点、为什么具有文中所述的优缺点、Nginx工作流程、Nginx最佳实践及历史演进等角度对其进行详细分析。希望对您有所帮助。 Nginx特性及优缺点 Nginx简介 Nginx(发音为 “engine-x”)是一款高性能的开源Web服务器及反向代理服…

前后端分离的后台管理系统开发模板(带你从零开发一套自己的若依框架)上

前言: 目前,前后端分离开发已经成为当前web开发的主流。目前最流行的技术选型是前端vue3后端的spring boot3,本次。就基于这两个市面上主流的框架来开发出一套基本的后台管理系统的模板,以便于我们今后的开发。 前端使用vue3ele…

狼人杀系列

目录 杀人游戏(天黑请闭眼) (1)入门版 (2)标准版 (3)延伸版——百度百科 (3.1)引入医生和秘密警察 (3.2)引入狙击手、森林老人和…

Python WebSocket自动化测试:构建高效接口测试框架

为了更高效地进行WebSocket接口的自动化测试,我们可以搭建一个专门的测试框架。本文将介绍如何使用Python构建一个高效的WebSocket接口测试框架,并重点关注以下四个方面的内容:运行测试文件封装、报告和日志的封装、数据驱动测试以及测试用例…

50-2 内网信息收集 - 内网工作环境(域相关知识)

一、工作组 工作组(Work Group)是局域网中最基本的资源管理模式,适用于小规模网络环境。 工作组的定义: 工作组是将不同功能或部门的计算机分组管理的方式。它提供了层次化的网络资源管理,使得组织内的计算机可以按照功能或部门分类。每个工作组有一个自定义的主机名称,…

1-爬虫基础知识(6节课学会爬虫)

1-爬虫基础知识(6节课学会爬虫) 1.什么是爬虫2.爬取的数据去哪了3.需要的软件和环境4.浏览器的请求(1)Url(2)浏览器请求url地址(3)url地址对应的响应 5.认识HTTP/HTTPS5.1 http协议之…

海康+libtorch的血泪教训

一、LibTorch使用, 详见: /INCLUDE:?warp_sizecudaatYAHXZ 二、海康二次开发, 目前选4.31,只能c14。 三、做dll注意:

Excel+vue+java实现批量处理功能

需求背景: 产品创建流程比较复杂,有时候需要一次性创建多至10个,所以做了Excel维护产品信息,直接导入创建的功能。能极大提高效率。 简要概括实现: 一、参考单个创建,设计创建模板,表头对应填写字段名&…

ComfyUI汉化插件安装

步骤一:点击Manager 步骤二:选择安装插件 步骤三:搜索Translation,选择第一个点击右边得安装 步骤四:点击下放得RESTART进行重启 步骤五:等待重启完成后,点击设置 步骤六:选择中文语…

【Nginx】源码安装

1.安装地址 Nginx官网:nginx: download 2.下载依赖 //一键安装上面四个依赖 yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel 3.上传解压编译安装 //解压压缩包tar -xvf nginx-1.26.1.tar.gz //进入nginx cd nginx-1.26.1/ //安装到指定位…

llm学习-1(包含如何使用github的codespace):

本文学习参考:datawhalechina/llm-universe: 本项目是一个面向小白开发者的大模型应用开发教程,在线阅读地址:https://datawhalechina.github.io/llm-universe/ 一些可使用的大模型地址: Claude 使用地址 PaLM 官方地址 Gemini…

力扣第一道困难题《3. 无重复字符的最长子串》,c++

目录 方法一: 方法二: 方法三: 方法四: 没有讲解,但给出了优秀题解 本题链接:4. 寻找两个正序数组的中位数 - 力扣(LeetCode) 话不多说,我们直接开始进行本题的思路解…