昇思25天学习打卡营第10天|基于MindSpore的GPT2文本摘要

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)

基于MindSpore的GPT2文本摘要

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip install tokenizers==0.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp

数据集加载与处理

  • 数据集加载

    本次实验使用的是nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。

from mindnlp.utils import http_get# download dataset
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')
from mindspore.dataset import TextFileDataset# load dataset
dataset = TextFileDataset(str(path), shuffle=False)
dataset.get_dataset_size()
# split into training and testing dataset
train_dataset, test_dataset = dataset.split([0.9, 0.1], randomize=False)

使用http_get函数从指定URL下载数据集。

使用TextFileDataset加载数据集,并将其分割为训练集和测试集。

  • 数据预处理

    原始数据格式:

    article: [CLS] article_context [SEP]
    summary: [CLS] summary_context [SEP]
    

    预处理后的数据格式:

    [CLS] article_context [SEP] summary_context [SEP]
import json
import numpy as np# preprocess dataset
def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def merge_and_pad(article, summary):# tokenization# pad to max_seq_length, only truncate the articletokenized = tokenizer(text=article, text_pair=summary,padding='max_length', truncation='only_first', max_length=max_seq_len)return tokenized['input_ids'], tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])# change column names to input_ids and labels for the following trainingdataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])dataset = dataset.batch(batch_size)if shuffle:dataset = dataset.shuffle(batch_size)return dataset

因GPT2无中文的tokenizer,我们使用BertTokenizer替代。

from mindnlp.transformers import BertTokenizer# We use BertTokenizer for tokenizing chinese context.
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
len(tokenizer)
train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)
next(train_dataset.create_tuple_iterator())

定义process_dataset函数来预处理数据集,包括读取数据、进行分词和填充等操作。

采用BertTokenizer进行中文文本的预处理。

模型构建

  • 构建GPT2ForSummarization模型,注意shift right的操作。
from mindspore import ops
from mindnlp.transformers import GPT2LMHeadModelclass GPT2ForSummarization(GPT2LMHeadModel):def construct(self,input_ids = None,attention_mask = None,labels = None,):outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)shift_logits = outputs.logits[..., :-1, :]shift_labels = labels[..., 1:]# Flatten the tokensloss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)return loss

创建GPT2ForSummarization类,继承自GPT2LMHeadModel,用于文本摘要任务。

construct方法中,实现标签的右移操作,匹配序列到序列的需求。

  • 动态学习率
from mindspore import ops
from mindspore.nn.learning_rate_schedule import LearningRateScheduleclass LinearWithWarmUp(LearningRateSchedule):"""Warmup-decay learning rate."""def __init__(self, learning_rate, num_warmup_steps, num_training_steps):super().__init__()self.learning_rate = learning_rateself.num_warmup_steps = num_warmup_stepsself.num_training_steps = num_training_stepsdef construct(self, global_step):if global_step < self.num_warmup_steps:return global_step / float(max(1, self.num_warmup_steps)) * self.learning_ratereturn ops.maximum(0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))) * self.learning_rate

定义LinearWithWarmUp类,实现线性预热衰减学习率策略,在训练初期逐步增加学习率以帮助模型快速收敛,随后在训练后期逐渐降低学习率以进行精细调整。

模型训练

num_epochs = 1
warmup_steps = 2000
learning_rate = 1.5e-4num_training_steps = num_epochs * train_dataset.get_dataset_size()from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModelconfig = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)lr_scheduler = LinearWithWarmUp(learning_rate=learning_rate, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps)
optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=lr_scheduler)# 记录模型参数数量
print('number of model parameters: {}'.format(model.num_parameters()))
from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallbackckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',epochs=1, keep_checkpoint_max=2)trainer = Trainer(network=model, train_dataset=train_dataset,epochs=1, optimizer=optimizer, callbacks=ckpoint_cb)
trainer.set_amp(level='O1')  # 开启混合精度

注:建议使用较高规格的算力,训练时间较长

trainer.run(tgt_columns="labels")

设置训练参数,如学习率、预热步数和总训练步数。

使用Trainer进行模型训练,设置检查点回调保存模型。

原数据集50000样本,训练时间较长,实际用了10000样本减少训练时间。

没有尝试静态图mindnlp/mindnlp/transformers/models/gpt2 · mindnlp · GitHub

模型推理

数据处理,将向量数据变为中文数据

def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def pad(article):tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)return tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])dataset = dataset.map(pad, 'article', ['input_ids'])dataset = dataset.batch(batch_size)return dataset
test_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
print(next(test_dataset.create_tuple_iterator(output_numpy=True)))
model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)
model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)output_text = tokenizer.decode(output_ids[0].tolist())print(output_text)i += 1if i == 1:break

定义process_test_dataset函数来处理测试数据集。

加载训练好的模型,使用generate方法生成摘要。

代码基于MindSpore的GPT2文本摘要模型。首先,导入了所需的库和模块,下载并加载数据集。接着,对数据集进行预处理,包括分词、填充等操作。构建GPT2ForSummarization模型,模型继承自GPT2LMHeadModel,重写construct方法。模型训练部分,设置学习率调度器、优化器和检查点回调,使用Trainer进行训练。最后,对测试数据集进行处理,使用训练好的模型进行推理,输出摘要结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/862226.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在LabVIEW中使用FPGA模块

LabVIEW FPGA模块是NI公司推出的一款强大工具&#xff0c;它允许用户使用LabVIEW图形化编程环境来开发FPGA&#xff08;现场可编程门阵列&#xff09;应用程序。与传统的HDL&#xff08;硬件描述语言&#xff09;编程相比&#xff0c;LabVIEW FPGA模块大大简化了FPGA开发的过程…

Python 语法基础二

7.常用内置函数 执行这个命令可以查看所有内置函数和内置对象&#xff08;两个下划线&#xff09; >>>dir(__builtins__) [__class__, __contains__, __delattr__, __delitem__, __dir__, __doc__, __eq__, __format__, __ge__, __getattribute__, __getitem__, __gt…

memcacheredis构建缓存服务器

Memcached&Redis构建缓存服务器 前言 许多Web应用都将数据保存到 RDBMS中&#xff0c;应用服务器从中读取数据并在浏览器中显示。但随着数据量的增大、访问的集中&#xff0c;就会出现RDBMS的负担加重、数据库响应恶化、 网站显示延迟等重大影响。Memcached/redis是高性能…

通过ChatGLM的简单例子体验大模型

【图书推荐】《从零开始大模型开发与微调&#xff1a;基于PyTorch与ChatGLM》_《从零开始大模型开发与微调:基于pytorch与chatglm》-CSDN博客 ChatGLM基于GLM架构&#xff0c;针对中文问答和对话进行了优化。经过约1TB标识符的中英双语训练&#xff0c;辅以监督微调、反馈自助…

Redis-Bitmap位图及其常用命令详解

1.Redis概述 2.Bitmap Bitmap 是 Redis 中的一种数据结构&#xff0c;用于表示位图&#xff08;bit array&#xff09;。 它通常用于处理大规模数据集中每个元素的状态&#xff0c;比如用户的在线/离线状态&#xff08;每个用户对应一个位&#xff0c;表示在线&#xff08;1&a…

计算机基础(6)——编码与解码-二进制与文本

&#x1f497;计算机基础系列文章&#x1f497; &#x1f449;&#x1f340;计算机基础&#xff08;1&#xff09;——计算机的发展史&#x1f340;&#x1f449;&#x1f340;计算机基础&#xff08;2&#xff09;——冯诺依曼体系结构&#x1f340;&#x1f449;&#x1f34…

Rust 程序设计语言学习——泛型、Trait和生命周期

每一种编程语言都有高效处理重复概念的工具。在 Rust 中其工具之一就是泛型。泛型是具体类型或其他属性的抽象替代。 Trait 定义了某个特定类型拥有可能与其他类型共享的功能。可以通过 Trait 以一种抽象的方式定义共同行为。可以使用 trait bounds 指定泛型是任何拥有特定行为…

Mac excel 同时冻结首行和首列

1. 选择B2窗格 2. 选择视图 3. 选择冻结窗格 最后首行和首列的分割线加粗了就表示成功了

youlai-boot项目的学习(3) 本地redis、MinIO的安装与配置

youlai-boot项目除了使用mysql数据库、还有redis&#xff0c;以及OSS服务&#xff0c;OSS除了云OSS服务&#xff0c;还有自部署的MinIO服务。 前面我们已经安装好了mysql数据库&#xff0c;那么我们来看看本地redis、MinIO服务怎么部署 环境 mac OS&#xff0c; iterm2&#…

C语言力扣刷题8——环形链表——[快慢双指针, 龟兔赛跑]

力扣刷题8——环形链表——[快慢双指针, 龟兔赛跑] 一、博客声明二、题目描述三、解题思路1、思路说明 四、解题代码&#xff08;附注释&#xff09; 一、博客声明 找工作逃不过刷题&#xff0c;为了更好的督促自己学习以及理解力扣大佬们的解题思路&#xff0c;开辟这个系列来…

拳打开源SOTA脚踢商业闭源的LI-DiT是怎样炼成的?(商汤/MMLab/上海AI Lab)

文章地址&#xff1a;https://arxiv.org/pdf/2406.11831 仅基于解码器的 Transformer 的大语言模型&#xff08;LLMs&#xff09;与 CLIP 和 T5 系列模型相比&#xff0c;已经展示出卓越的文本理解能力。然而&#xff0c;在文本到图像扩散模型中利用当前先进的大语言模型的范例…

中霖教育怎么样?注册会计师考试难吗?

中霖教育&#xff1a;注册会计师&#xff08;CPA&#xff09;考试的难度高吗&#xff1f; 对于不同背景的考生来说&#xff0c;注册会计师考试的挑战程度不同。那些有良好基础和充裕准备时间的考生&#xff0c;通过考试的可能性要超过那些从零开始且准备时间有限的人。 据最近…

GPOPS-II教程(5): 月球探测器着陆最优控制问题

文章目录 问题描述GPOPS代码main functioncontinuous functionendpoint function仿真结果 最后 问题描述 参考文献&#xff1a;[1] Meditch J. On the problem of optimal thrust programming for a lunar soft landing[J]. IEEE Transactions on Automatic Control, 1964, 9(4…

Linux基础- 使用 Apache 服务部署静态网站

目录 零. 简介 一. linux安装Apache 二. 创建网页 三. window访问 修改了一下默认端口 到 8080 零. 简介 Apache 是世界使用排名第一的 Web 服务器软件。 它具有以下一些显著特点和优势&#xff1a; 开源免费&#xff1a;可以免费使用和修改&#xff0c;拥有庞大的社区支…

Web渗透:任意文件下载

任意文件下载漏洞&#xff08;Arbitrary File Download Vulnerability&#xff09;是一种常见的Web安全漏洞&#xff0c;它允许攻击者通过修改输入参数&#xff0c;从服务器下载任意文件&#xff0c;而不仅仅是预期的文件&#xff1b;通常这种漏洞出现在处理用户输入的地方&…

python CSSE7030

1 Introduction In this assignment, you will implement a (heavily) simplified version of the video game ”Into The Breach”. In this game players defend a set of civilian buildings from giant monsters. In order to achieve this goal, the player commands a s…

AI进阶指南第四课,大模型优缺点研究?

在上一篇文章中&#xff0c;我主要探讨了LM模型与企业级模型的融合。 但是&#xff0c;在文末对于具体的大模型优缺点只是简单地说明了一下&#xff0c;并不细致。 因此&#xff0c;在这一节&#xff0c;我将更为细致地说明一下大模型的优缺点。 一&#xff0c;隐私安全 将L…

2018年全国大学生数学建模竞赛A题高温服装设计(含word论文和源代码资源)

文章目录 一、部分题目二、部分论文三、部分Matlab源代码问题11 求解h1h22 已知h1h2求解温度分布 问题21 求解第二层最佳厚度 四、完整word版论文和源代码&#xff08;两种获取方式&#xff09; 一、部分题目 2018 年高教社杯全国大学生数学建模竞赛题目 A 题 高温作业专用服…

Linux C 程序 【02】创建线程

1.开发背景 上一个篇章&#xff0c;基于 RK3568 平台的基础上&#xff0c;运行了最简单的程序&#xff0c;然而我们使用了 Linux 系统&#xff0c;系统自带的多线程特性还是比较重要的&#xff0c;这个篇章主要描述线程的创建。 2.开发需求 设计实验&#xff1a; 创建一个线程…

入门JavaWeb之 JavaBean 实体类

JavaBean 有特定写法&#xff1a; 1.必须有一个无参构造 2.属性必须私有 3.必须有对应的 get/set 方法 一般用来和数据库的字段做映射 ORM&#xff1a;对象关系映射 表->类 字段->属性 行记录->对象 连接数据库 没有的话去 Settings -> Plugins 搜索 Data…