class Solution {
public:vector<vector<int>> result;vector<int> path;void backtracking(int n, int k, int startIndex){if(path.size() == k){result.push_back(path);return;}for(int i = startIndex; i <= n; i ++ ){path.push_back(i);backtracking(n, k, i + 1);path.pop_back();}}vector<vector<int>> combine(int n, int k) {backtracking(n, k, 1);return result;}
};
class Solution {
public:vector<vector<int>> result;vector<int> path;void backtracking(int targetSum, int k, int sum, int startIndex){if(path.size() == k){if(sum == targetSum)result.push_back(path);return;}for(int i = startIndex; i <= 9; i ++){sum += i;path.push_back(i);backtracking(targetSum, k, sum, i + 1);sum -= i;path.pop_back();}}vector<vector<int>> combinationSum3(int k, int n) {backtracking(n, k, 0, 1);return result;}
};
文章目录 问题描述GPOPS代码main functioncontinuous functionendpoint function仿真结果 最后 问题描述 参考文献:[1] Meditch J. On the problem of optimal thrust programming for a lunar soft landing[J]. IEEE Transactions on Automatic Control, 1964, 9(4…
1 Introduction In this assignment, you will implement a (heavily) simplified version of the video game ”Into The Breach”. In this game players defend a set of civilian buildings from giant monsters. In order to achieve this goal, the player commands a s…