多维时序 | MATLAB实现WOA-CNN-LSTM-Attention多变量时间序列预测(SE注意力机制)

多维时序 | MATLAB实现WOA-CNN-LSTM-Attention多变量时间序列预测(SE注意力机制)

目录

    • 多维时序 | MATLAB实现WOA-CNN-LSTM-Attention多变量时间序列预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现WOA-CNN-LSTM-Attention多变量时间序列预测(SE注意力机制);
2.运行环境为Matlab2021b;
3…data为数据集,excel数据,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
5.鲸鱼算法优化学习率,隐藏层节点,正则化系数;

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-LSTM-Attention多变量时间序列预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/86134.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STL-函数对象、谓词、常用算法

函数对象 函数对象概念 重载函数调用操作符的类,其对象常称为函数对象 函数对象使用重载的()时,行为类似函数调用,也叫仿函数 本质: 函数对象(仿函数)是一个类,不是一个函数 函数对象使用…

嵌入式单片机上练手的小型图形库

大家好,今天分享一款小型的图形库。 Tiny Graphics Library: http://www.technoblogy.com/show?23OS 这个小型图形库提供点、线和字符绘图命令,用于 ATtiny85 上的 I2C 128x64 OLED 显示器. 它通过避免显示缓冲器来支持RAM有限的处理器&…

tcpdump常用命令

需要安装 tcpdump wireshark ifconfig找到网卡名称 eth0, ens192... tcpdump需要root权限 网卡eth0 经过221.231.92.240:80的流量写入到http.cap tcpdump -i eth0 host 221.231.92.240 and port 80 -vvv -w http.cap ssh登录到主机查看排除ssh 22端口的报文 tcpdump -i …

银行家算法——C语言实现

算法思路 将操作系统看作是银行家,操作系统所拥有的资源就相当于银行家所拥有的资产,进程向操作系统申请资源就相当于资产家向银行贷款,规定资产家在向银行贷款之前,先申明其所贷数额的最大值,申明之后其贷款的数额不…

数据结构与算法-时间复杂度与空间复杂度

数据结构与算法 🎈1.概论🔭1.1什么是数据结构?🔭1.2什么是算法? 🎈2.算法效率🔭2.1如何衡量一个算法的好坏?🔭2.2算法的复杂度🔭2.3时间复杂度📖2…

软件设计师考试学习2

数据结构与算法基础 数组 稀疏矩阵 用代入法计算,A 数据结构的定义 非线性结构分为树和图,区别在于有没有环路 顺序表与链表 引入头节点可以使所有的节点处理方式一致 如果没有空的头节点,头节点需要单独处理 顺序存储与链式存储 查找…

AI-Chat,一款集全网ai功能的应用(附下载链接)

AI-Chat是一款综合性的聊天机器人,集成了多种先进的模型和功能。它采用了GPT4.0、联网版GPT和清华模型等多种模型,使得其具备更强大的语言处理能力。同时,AI-Chat还融合了AI绘画模型,例如Stable Diffusion绘画、文生图、图生图、艺…

基于下垂控制的并网逆变器控制MATLAB仿真模型

微❤关注“电气仔推送”获得资料(专享优惠) 主要模块: 建议使用MATLAB2021b及以上版本打开! 功率计算模块、下垂控制模块、电压电流双环控制模块、虚拟阻抗压降模块 扰动设置: 在0.5秒到2秒始端设置0.25Hz的电网频…

手机上网流程解析

来看一个手机开机之后上网的流程,这个过程称为 Attach。可以看出来,移动网络还是很复杂的。因为这个过程要建立很多的隧道,分配很多的隧道 ID,所以我画了一个图来详细说明这个过程。 1、手机开机以后,在附近寻找基站 e…

Hadoop源码阅读(三):HDFS上传

说明: 1.Hadoop版本:3.1.3 2.阅读工具:IDEA 2023.1.2 3.源码获取:Index of /dist/hadoop/core/hadoop-3.1.3 (apache.org) 4.工程导入:下载源码之后得到 hadoop-3.1.3-src.tar.gz 压缩包,在当前目录打开Pow…

2023华为杯数学建模竞赛E题

一、前言 颅内出血(ICH)是由多种原因引起的颅腔内出血性疾病,既包括自发性出血,又包括创伤导致的继发性出血,诊断与治疗涉及神经外科、神经内科、重症医学科、康复科等多个学科,是临床医师面临的重要挑战。…

Python之网络编程

一、网络编程 互联网时代,现在基本上所有的程序都是网络程序,很少有单机版的程序了。 网络编程就是如何在程序中实现两台计算机的通信。 Python语言中,提供了大量的内置模块和第三方模块用于支持各种网络访问,而且Python语言在网络通信方面的优点特别突出,远远领先其他语…

KT142C语音芯片flash型用户如何更新固件的说明_V2

目录 一、简介 2.1 让芯片进入PC模式 2.2 双击提供的exe程序即可 一、简介 正常的情况下,用户肯定是不需要更新固件的,因为芯片出厂默认就烧录了对应的程序固件,但是有客户可能需要小修小改,或者订制一下某些功能&#xff0c…

Linux设备驱动之Camera驱动

Linux设备驱动之Camera驱动 Camera,相机,平常手机使用较多,但是手机的相机怎么进行拍照的,硬件和软件,都是如何配合拍摄到图像的,下面大家一起来了解一下。 基础知识 在介绍具体Camera框架前&#xff0c…

Linux——进程

目录 一、基本概念 二、描述进程-PCB (一)task_struct-PCB的一种 (二)task_ struct内容分类 三、查看进程 (一)利用ps命令 (二) 通过 /proc 系统文件夹查看 (三…

停车场系统源码

源码下载地址(小程序开源地址):停车场系统小程序,新能源电动车充电系统,智慧社区物业人脸门禁小程序: 【涵盖内容】:城市智慧停车系统,汽车新能源充电,两轮电动车充电,物…

zemaxMIF曲线图

调制传递函数( Modulation Transfer Function,MTF )是用来形容光学系统成像质量的重要指标。 通过对光学系统像空间进行傅里叶变换,可以得到一张分析图表,来描述像面上对比度和空间频率之间的对应关系。 对比度&…

C/C++统计满足条件的4位数个数 2023年5月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析

目录 C/C统计满足条件的4位数个数 一、题目要求 1、编程实现 2、输入输出 二、解题思路 1、案例分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 C/C统计满足条件的4位数个数 2019年12月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 给定若干…

numpy 和 tensorflow 中的各种乘法(点乘和矩阵乘)

嗨喽,大家好呀~这里是爱看美女的茜茜呐 👇 👇 👇 更多精彩机密、教程,尽在下方,赶紧点击了解吧~ python源码、视频教程、插件安装教程、资料我都准备好了,直接在文末名片自取就可 点乘和矩阵乘…

【深度学习实验】前馈神经网络(三):自定义多层感知机(激活函数logistic、线性层算Linear)

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集 2. 激活函数logistic 3. 线性层算子 Linear 4. 两层的前馈神经网络MLP 5. 模型训练 一、实验介绍 本实验实现了一个简单的两层前馈神经网络 激活函数…