Queue
的定义和结构
队列(Queue
) 是只允许在一端进行插入,在另一端进行删除的线性表
队列是一种先进先出(First In First Out
)的线性表,简称 FIFO
(First IN First OUT
), 允许插入的一端称为队尾, 允许删除的一端称为队列头
队列的基本结构如下图所示:
Queue
的抽象数据类型
队列也有线性表的各种操作,不同的是插入元素只能在队列尾,删除元素只能在对列头进行:
队列的抽象结构如下所示:
ADT Queue(队列)
Data:同线性表, 元素具有相同的类型,相邻的元素具有前驱和后继关系
Operation:InitQueue(Q*)DestroyQueue(Q*)isEmpty(Q*)isFull(Q*)dequeue(Q*, *e)enqueue(Q*, e)queueSize(Q)
endADT
队列有多种实现方式,比如 静态数组,动态数组,单链表,双链表等
静态数组实现Queue
静态数组实现队列的基本原理:
- 建立一个
MAX_SIZE
的数组, 用于存放 Queue 中的元素 - 建立int类型
queue->rear
代表队列尾, 每次enqueue
一个元素时,queu->rear
指向最新的元素位置
- 建立
queue->front
代表队列头, 每次dequeue
一个元素,从queue->front
位置处取出数据,并且最后其指向下一个元素位置
- 当
queue->rear
和queue->front
相等时,queue->front
和queue->rear
都重新设置为 0,此时队列为空,表示重新开始存储数据
参考代码如下:
#define MAX_SIZE 100
typedef struct {int data[MAX_SIZE];int front;// queue 尾端的索引int rear;
}Queue;void Queueinit(Queue* queue) {queue->front = -1;queue->rear = -1;
}int isEmpty(Queue* queue) {return (queue->front == -1 && queue->rear == -1);
};int isFull(Queue* queue) {// queue->rear == MAX_SIZE - 1 queue->front = 0//return (queue->rear + 1)%MAX_SIZE == queue->front;if((queue->rear + 1 - queue->front) == MAX_SIZE) {return 1;}return 0;
};void enqueue(Queue* queue,int item) {if(isFull(queue)) {fprintf(stderr,"queue is full. \n");return;}//printf("queue front is %d rear is %d \n",queue->front,queue->rear);if(isEmpty(queue)) {queue->rear = 0;queue->front = 0;} else {queue->rear = (queue->rear+1)%MAX_SIZE;}queue->data[queue->rear] = item;
}int dequeue(Queue* queue) {if(isEmpty(queue)) {fprintf(stderr,"queue is empty. \n");return -1;}int item = queue->data[queue->front];// with no elementif(queue->front == queue->rear) {printf("queue has no element backup to empty\n");queue->front = -1;queue->rear = -1;} else {queue->front = (queue->front +1)%MAX_SIZE;}return item;
}int peek(Queue* queue) {if(isEmpty(queue)) {fprintf(stderr,"queue is empty. \n");return -1;}return queue->data[queue->front];
}int testbasicQueueStaticArray(int agrc, char *argv[]) {{Queue testqueue = {.front = -1,.rear = -1,};Queueinit(&testqueue);for(int i = 0; i < 2000; i++) {enqueue(&testqueue,200+i);dequeue(&testqueue);}enqueue(&testqueue,1001);enqueue(&testqueue,1002);enqueue(&testqueue,1003);printf("dequeue item:%d \n", dequeue(&testqueue));printf("dequeue item:%d \n", dequeue(&testqueue));printf("dequeue item:%d \n", dequeue(&testqueue));printf("dequeue item:%d \n", dequeue(&testqueue));printf("peek queue element: %d queue size:%d\n", peek(&testqueue),QueueSize(&testqueue));}}
单链表实现Queue
单链表实现Queue
的基本原理:
-
建立一个单链表,包含指向队列头的指针
queue->front
和指向队列尾的指针queue->rear
-
当
enqueue
时,首先为新元素分配空间,然后插入到单链表的尾部,用queue->rear
指向它
-
当
dequeue
时,首先返回queue->front
指向的节点内容,然后free掉queue->front
节点,queue->front
指向顺序的后一个节点
参考代码如下:
struct node {int data;struct node *next;
};typedef struct {struct node *front;struct node *rear;
}Queue;static int empty(Queue* queue){return (queue->front == NULL);
}static void initQueue(Queue* queue) {queue->front = queue->rear = NULL;
}static void push(Queue* queue, int value) {struct node *pnode;pnode = (struct node*)malloc(sizeof(struct node));if(pnode == NULL) {printf("malloc node failed!.\n");exit(1);}pnode->data = value;pnode->next = NULL;if(empty(queue)) {queue->front = pnode;queue->rear = pnode;} else {queue->rear->next= pnode;queue->rear = pnode;}
}static int pop(Queue* queue) {if (empty(queue)){printf("Queue Underflow. Unable to remove.\n");exit(1);}int item;struct node *p = queue->front;item = queue->front->data;queue->front = queue->front->next;if (queue->front == NULL) /* Queue contained only one node */queue->rear = NULL;free(p);return item;
}static int peek(Queue* queue) {if (empty(queue)){printf("Queue Underflow. Unable to remove.\n");exit(1);}return queue->front->data;
}static int queueSize(Queue* queue){struct node *p = queue->front;int count = 0;if(empty(queue)){return 0;}do {p = p->next;count++;}while(p != NULL);return count;
}int testbasicQueueImplsingleLinkedList(int agrc, char *argv[]) {{Queue testqueue;int qsize = 0;initQueue(&testqueue);push(&testqueue, 10);printf("queue size: %d. \n", queueSize(&testqueue));push(&testqueue, 101);push(&testqueue, 102);push(&testqueue, 103);push(&testqueue, 104);printf("queue size: %d. \n", queueSize(&testqueue));printf("pop value: %d queue size: %d. \n", pop(&testqueue), qsize);qsize = queueSize(&testqueue);printf("pop value: %d queue size: %d. \n", pop(&testqueue), qsize);qsize = queueSize(&testqueue);printf("pop value: %d queue size: %d. \n", pop(&testqueue), qsize);qsize = queueSize(&testqueue);printf("pop value: %d queue size: %d. \n", pop(&testqueue), qsize);printf("queue size: %d. \n", queueSize(&testqueue));printf("peek value: %d \n", peek(&testqueue));printf("queue size: %d. \n", queueSize(&testqueue));}return 1;
}