Redis预备知识

一.预备知识

1.基本全局命令

set key value 将key的值设置成value

get key 得到key的值

keys [pattern] 查看匹配pattern的所有key

比如h?llo匹配hallo,hbllo,hcllo……只要用一个符号将?代替即可

比如h*llo匹配hllo,heeeello……用0个1个或多个字符将*代替即可

比如h[ae]llo匹配hallo,hello只有这两个

比如h[a-e]llo匹配hallo,hbllo,hcllo,hdllo,hello这五个

比如h[^e]llo表示除e之外的字母都匹

那keys * 则可以获取到任何key

keys命令的时间复杂度是O(N)所以在生产环境上一般禁止使用keys,尤其是大杀器 keys *。因为生产环境上的key一般非常非常多,而Redis又是一个单线程服务器,执行keys*的时间就会非常长,就会使redis服务器阻塞住,无法给其他命令/其他客户端使用。

就像一个妹纸同时交了三个男友,同时与三个男友周旋,如果在同一时间三个男友都要约会,就周旋不过来了。

而且Redis经常被当作缓存,替mysql负重前行。一旦redis被keys *给阻塞住了,那么美其他查询redis的命令就超时了,就会直接访问mysql。突然一大波请求发送过来,mysql就会措手不及,容易挂了

exists key [key……] 判断指定的key是否存在

返回值是存在的key的个数

这个命令的时间复杂度是O(1),因为Redis组织这些key-value键值对是按照hash表的方式来组织的,每次找一个key都是O(1),所以当key特别多时,时间复杂度就成了O(N),N指的是key的个数。

exists key1 exists key2 与exists key1 key2 达到的效果相同,但实际上差别很大,因为Redis是客户端与服务器之间通过网络进行通信的,第一种查询方式会产生更多轮次的网络通信,这与直接操作内存比的话,效率更低,成本更高。

因为每次网络通信都涉及到封装分用:进行网络通信时,发送放发送一个数据,这个数据就要从应用层到物理层,层层封装(即每一层协议都要加上报头报尾),就像抱一个快递要包很多层。接收方收到后,这个数据就要从物理层到应用层,层层分用(也就是拆快递)

del key [key^] 删除指定的key

返回值是成功删除掉的key的个数

时间复杂度是O(1)。其实还是和exists一样,有几个key就是O几的时间复杂度

我们知道在MySQL中删除数据是很危险的操作,那么del在redis中是不是危险操作呢?

当redis作为缓存存储热点数据时,由于全量数据依然安安全全的在MySQL中,所以redis这里误删了几个数据没有太大影响,只要通过mysql再把数据给映射到redis就可以了。不过要是突然一下子一大半热点数据,redis就大概率无法替mysql负重前行了,就可能使得很多的请求突然到了MySQL那里,可能会导致MySQL挂掉。

当redis作为MQ(消息队列)时,影响程度就要分情况来看了

当redis代替mysql作为数据库时,影响就很大啦

expire key seconds 为指定的key添加过期时间

ttl key 查看当前key剩余的时间

如上,过期时间的单位是秒级,当到期时ttl的返回值就是-2

expire的应用场景有很多:比如点外卖,优惠券在指定时间内有效;比如手机验证码的有效时间;比如分布式锁的实现,有多种实现方式,其中redis就是一种(所谓redis实现分布式锁,其实就是给redis加一个特殊的key-value,把它删了就是解锁),为了避免不能正确解锁的情况,redis就会给锁设置过期时间。

pexpire key也是设定过期时间,不过它的单位是毫秒

注意,当expire和pexpire后面的key不存在时,返回值就是0

ttl key 查看当前key剩余的时间

ttl获取指定key的过期时间,它的单位也是秒级,ttl即Time To Live

当没有关联过期时间时,它的返回值就是-1,当key不存在时,它的返回值就是-2

在IP协议的报头也有一个ttl,但那个TTL不是用时间来衡量过期的,而是用次数

Redis的过期策略如何实现?

一个Redis中存在很多key,这些key中可能大部分都有过期时间,此时redis服务器咋知道那些key过期了?

redis的整体策略就是定期删除和惰性删除。惰性删除就是当key到期时,先不删,紧接着后面又访问到的时候redis就发现这个key过期了,再把它删了,同时返回nil;而上述过程也要结和定期删除,就是每次抽取一小部分key,看看有没有到期的,有的话就删了。(只取一小部分就能够保证这个抽取检查的过程足够快,防止redis线程阻塞)。

为啥对于定期删除的时间有明确规定?因为redis时单线程程序,它主要的任务(处理命令,扫描过期的key……)都是在一个线程中执行的,如果扫描key这个操作消耗的时间太多或这个操作太频繁,就会影响其他命令执行,就可能达到和keys*一样的效果.

虽然有了上述两种策略,但整体效果还是一般,仍然会有key没能及时删除。因此redis也提供了一系列内存淘汰策略(这个以后会讲到)

注意,redis没有使用定时器的策略来实现过期key的删除。但这里我们也简单复习一下定时器的实现

定时器的实现:

1.基于优先级队列/堆

在redis的过期key中,通过”过期时间越早,优先级越高,越先出队列,队首元素,最早过期”的方式实现key的删除。此时定时器秩序分配一个线程,让线程去检查队首元素,看是否过期。但扫描线程检查队首元素的过期时间时,也不能太频繁,否则会出现忙等。此时就可更具队首元素的过期时间设置一个等待时间,当时间差不多了,系统就唤醒线程。这样的话,扫描线程就不用高频率扫描队首元素了,就能省下cpu开销。但万一要是在休眠的时候来了一个新任务要执行该怎么办?那就直接唤醒这个扫描线程,重新检查队首元素,再根据过期时间去重新调整等待时间。如果key特别多,就可以多来几个扫描线程。

当然redis没有采用这个方法,因为redis是单线程程序。

2.基于时间轮实现的定时器

把时间划分成很多很多的小段(划分的粒度看实际需求),把小段分配到一个圆环上,每一个小段都是一个链表,都代表要执行的任务。假设每一个小段代表100毫秒,有一个key是300毫秒后过期,那么他就被添加到第三个小格上。然后指针就会每隔100毫秒向下走一小格,每次走到一个格子就会把这个格子链表上的任务尝试执行一下,看是不是真的到时间了(就比如一个任务是3000ms过期,那么指针就要转好几圈才能执行到)。

对于时间轮来说,一共多少格子,每个格子多长时间,都是可以灵活调配的。但redis也没有采取这个定时器的策略,不过redis源码里面有个比较核心的机制:事件循环,与时间轮优点类似

type key 查看指定key对应的value的数据类型

key不存在时返回null

lpush,sadd,hset等命令会在后面讲到

2.Redis数据结构及内部编码

Redis支持很多数据结构,指的是一个value可以是一些复杂的结构,然而它的这些键值对都是通过hash表的形式来组织的,而且key的类型只能是string类型。在redis官方文档上,列出了12中数据结构,如下,不过我们常用的就是5种:String,List,Set,Hash,Zset(有序集合).

但注意,这些只是redis对外的数据结构,它内部可不一定真的是使用这个结构存储value的:Redis底层在实现上述数据结构时,会在源码层面上,针对上述实现进行特定的优化,来达到节省空间/时间的效果。内部具体实现的数据结构(编码方式),还会有变数。

就比如:redis承诺,现在我这里有关hash表,你进行查询删除插入操作时,都保证O(1),但是,这背后的实现,可不一定是标准的hash表,可能在特定场景下使用别的数据结构实现,从而保证承诺

String的内部编码: raw,int,embstr

raw:表示最基本的字符串,底层持有一个byte数组

int:当value是一个整数时,redis就会使用int来存储,从而更快实现计数,加减这样的操作

embstr:这个是用来针对短字符串进行特殊优化的。但要是字符串太长,就会使用raw

hash的内部编码:hashtable和ziplist

hashtable:注意,它与java标准库中的hashtable不一样

ziplist:压缩列表,在hash表中的元素较少时,使用ziplist来进行优化,但是当元素很多时,就不能使用ziplist而是使用hashtable。压缩列表能够节省空间,但是它的遍历就会变成顺序遍历(那这样的话还能是O(1)的时间复杂度吗?可以,因为元素很少,遍历起来很快)。

为啥要压缩?redis上有很多key,可能某些key的value是hash类型,此时,若这样的key特别多,那么对应的hash结构就很多,那肯定要占用很多内存空间。但要是每个hash都不大,那就用ziplist尽量去压缩,从而使整体占用的内存空间减小。到这里有人会说,那不应该hash越大,越要压缩吗?注意,节省了空间,那肯定在压缩是有其他开销!!,比如时间……

list的内部编码:linkedlist和ziplist

linkedlist:就是链表

ziplist:压缩链表

但是,这是旧版本的redis的list实现方式,从redis3.2版本开始,list的实现方式是quicklist,它代替了linkedlist和ziplist,兼顾两者的优点。quicklist就是一个链表,每一个节点的元素又是一个ziplist。也就是说,quicklist的空间和效率都折中兼顾了

set的编码方式:hashtable和intset

intset:当集合中都是整数时,就是用intset

zset的编码方式:skiplist和ziplist

skiplist:跳表,每个节点上有多个指针域,巧妙搭配这些指针域的指向,就可以达到查询的时间复杂度为O(log2N),就近似于二叉平衡搜索树

通过 object encoding key 的命令可以查看指定key的内部编码方式

3.redis的单线程架构

redis只是用一个线程来处理所有的命令和请求,但不是说redis真的只有一个线程,其实它也有多个线程,只不过其他的线程都是在处理网络IO罢了。

假设有两个请求同时要求key自增,那么key最终的结果是加一还是加二呢?

首先回顾一下:在多线程中,自增操作存在线程安全问题,因为自增操作在cpu角度是分成三个指令执行的,它不是原子的,因此可能当两个线程(两个cpu核,共用同一个内存空间)同时要求key自增时,key只自增一次。

redis这里,两个请求同时要求key自增,这也相当于“并行”发起。但是redis服务器这里不会有线程安全问题。因为reids是单线程模型,而不是多线程,这两个请求看似是同时到达redis服务器,但最终还是得在队列里排队,一个一个进行。

redis能使用单线程模型很好的工作,主要是因为redis的核心业务逻辑都是短平快的,不太消耗cpu资源,不太吃多核cpu。

但这样的弊端就是:redis必须要特别小心,若某个操作占用时间特别长,那么就会阻塞其他命令的执行

相关面试题:Redis虽然是单线程模型,但为啥效率这么高,速度这么快?(参照物是数据库)

1.redis访问内存,而数据库访问硬盘

2.redis的核心功能比数据库简单,干的活少,提供的功能比数据库少了不少

3.redis单线程模型,避免了不必要的线程竞争开销。redis每个基本操作都是短平快的,就是简单的操作内存数据结构,不是什么特别消耗cpu的操作,就算是搞个多线程,也没多大意义,提升也不大,甚至可能降低效率

4.redis处理网络IO时,使用了epoll这样的IO多路复用的机制

什么是IO多路复用?就是指一共线程可以管理多个socket。针对TCP来说,服务器这边每次要服务多个客户端,都要给每一个客户端安排一个socket,通过此socket来和客户端进行通信。一个服务器要服务多个客户端,所以自然而然就有多个socket。这些socket难道都是无时无刻不在传输数据吗?当然不是,大多数情况下,这些socket是静默的,上面是没有数据要传输的,也就是说,同一时刻只有少数socket是活跃的。

在以前介绍TCP服务器的时候,有个版本是每个客户端给分配一个线程,这就导致客户端很多时,线程就很多,系统开销就很大。但上面咱们说了大多是线程是不活跃的。所以就可以引入IO多路复用,让一个线程同时去处理多个socket(这是操作系统给程序员提供的机制,即API,内部的功能是操作系统内核实现的。

在linux上,IO多路复用的实现主要是三套API:select,poll,epoll。

什么是epoll呢?好比我们去小吃街买炒饭、肉夹馍和饺子,我们先去让老板做炒饭,在等的过程中去买肉夹馍,再在等的过程中去买饺子。这三份饭,那个先做好了,对应的老板就来喊我,最大限度的节省了时间。这就是epoll,事件通知/回调机制,此时,我一个线程,就同时做了三件事情,但能够同时做这撒气那件事情的前提是这三件事情的交互不太频繁,大部分时间都在等待。

那什么是select呢?那就是老板不喊我,我不停的在三个窗口之间来回跑,问老板饭好了没有

对于IO多路复用,java中使用的是NIO(标准库中提供的一组类,底层封装了epoll)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/858269.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【图像识别系统】昆虫识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50

一、介绍 昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集(‘蜜蜂’, ‘甲虫’, ‘蝴蝶’, ‘蝉’, ‘蜻蜓’, ‘蚱蜢’, ‘蛾’, ‘蝎子’, ‘…

02_ESP32+MicroPython 点亮LED灯

书接第1篇《01_ESP32 MicroPython开发环境搭建_eps32开发板-CSDN博客》 想要让一个引脚输出高电平,只需要找到对应的GPIO然后通过on()或者value(1)操作就可以,同理如果想要输出低电平让LED灯灭,只需要调用off()或者value(0)就行。 一、点亮…

【ACM出版】2024人工智能与自然语言处理国际学术会议(AINLP 2024,7月19-21)

2024人工智能与自然语言处理国际学术会议(AINLP 2024)将于2024年7月19-21日在中国珠海召开,该会议作为第四届人工智能、自动化与高性能计算国际会议(AIAHPC 2024)分会场召开。 本次会议主要围绕“人工智能与自然语言处…

【网络安全的神秘世界】SQL注入漏洞

🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 本章知识使用的靶场:DVWA 一、漏洞简介 SQL:结构化查询语言,是一种特殊的编程语言&#…

智能风控(原理、算法与工程实践)项目一

本文介绍该书第一章的项目:运用CART树进行规则挖掘,具体代码如下 #!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import os # In[2]: data pd.read_excel( ./data_for_tree.xlsx) # In[3]: data.h…

《三国:谋定天下》成为了SLG游戏现象级的成功案例

原标题:《三国:谋定天下》引领SLG游戏新潮流,B站股价五个飙升了30% 易采游戏网6月23日:B站作为年轻人喜爱的文化社区和视频平台,再次用一款新的游戏证明了其在游戏发行领域的独到眼光与强大实力。最近大火的策略角色扮…

Linux简单使用——配置仓库

虚拟机和Xshell连接 在虚拟机上打开终端查看IP 在Xshell上建立会话 输入ssh root192.168.231.123 防火墙关闭 、 重启计算机命令 删除文件 然后ls查看 清除之前的垃圾 最后做一下命令缓存

Java程序之简单“记事本”

要求:如下图所示,记事本具有新建、打开文本、保存、关闭等功能。 算法思路: 这是一个使用Java Swing库创建的简单文本编辑器。它包含一个菜单栏,其中包含“文件”菜单以及四个子菜单项:“新建”、“打开”、“保存”和…

STM32CubeMX 创建 MDK 工程

STM32CubeMX 创建 MDK 工程 MDK (Keil uVision) MDK (Keil uVision) 是 Arm 公司开发的一款集成开发环境 (IDE),专门用于 Arm 架构的嵌入式系统开发。它提供了全面的功能,包括: 代码编辑器,支持语法高亮、代码补全和错误检测调试…

【web1】标签,css,js

文章目录 1.标签:input1.1 html:HTML(用于创建网页结构),CSS(对页面进行美化),JavaScript(用于与用户交互)1.2 文本标签:字体属性1.3 a标签&#…

【软件测试】认识测试

文章目录 1.什么是测试2.软件测试和开发的区别3.优秀的测试人员需要具备的素质 1.什么是测试 软件测试就是验证软件产品特性是否满足用户的需求 产品特性: 功能性能界面易用性 2.软件测试和开发的区别 工作内容 开发以编码为主,而测试以测试为主&…

力扣SQL50 查询近30天活跃用户数 datediff(日期1,日期2)

Problem: 1141. 查询近30天活跃用户数 👨‍🏫 参考题解 -- 选择活动日期作为天数,计算每天的唯一活跃用户数 select activity_date as day, count(distinct user_id) as active_users from activity -- 从2019年7月27日开始的30天内 where …

【database3】oracle:数据交换/存储/收集

文章目录 1.oracle安装:swap,dd1.1 创建swap交换区:grep MemTotal /proc/meminfo (安装Oracle物理内存要求1024MB以上),grep SwapTotal /proc/meminfo1.2 安装依赖包及改系统核心参数:关闭一些系…

RepVGG论文阅读笔记

目录 RepVGG: Making VGG-style ConvNets Great Again摘要INTRODUCTION—简介RepVGG BlockModel Re-parameterization -- 模型重参数化融合Conv2d和BN,将三个分支上的卷积算子和BN算子都转化为卷积算子(包括卷积核和偏置)多分支融合&#xff…

Vue elementui表格

去除表头 <el-table:data"tableData"stripestyle"width: 100%":cell-style"{ text-align: justify-all }":show-header"false"></el-table>合并 <template><div class"elife-container"><el-ro…

蓝桥杯 经典算法题 实现归并排序

题目&#xff1a; 题解&#xff1a; 不断地将数组不断向下平均分为两部分&#xff0c;直到每个子数组中元素数量为1&#xff0c;这样就可以将相邻两个数组长度为1的数组看作是单调数组合并为一个大的单调数组&#xff0c;如此不断向上合并出最终的单调数组。 #include <bi…

BC64 牛牛的快递(c++)

牛牛的快递 题目描述输入描述输出描述示例代码 解题思路例如 题目描述 牛牛正在寄快递&#xff0c;他了解到快递在 1kg 以内的按起步价 20 元计算&#xff0c;超出部分按每 kg 1元计算&#xff0c;不足 1kg 部分按 1kg计算。如果加急的话要额外付五元&#xff0c;请问牛牛总共要…

【计算机网络篇】数据链路层(12)交换机式以太网___以太网交换机

文章目录 &#x1f354;交换式以太网&#x1f6f8;以太网交换机 &#x1f354;交换式以太网 仅使用交换机&#xff08;不使用集线器&#xff09;的以太网就是交换式以太网 &#x1f6f8;以太网交换机 以太网交换机本质上就是一个多接口的网桥&#xff1a; 交换机的每个接口…

国产大模型技术创新分析

国产模型百舸争流&#xff0c;技术创新百花齐放 2023年下半年起&#xff0c;国内大模型领域迎来“百模大战”&#xff0c;各大厂商纷纷加速生成式AI的研发与突破&#xff0c;模型持续迭代升级&#xff0c;展现了人工智能技术的蓬勃发展与无限潜力。 中国大模型市场迅猛发展&am…

【Linux详解】冯诺依曼架构 | 操作系统设计 | 斯坦福经典项目Pintos

目录 一. 冯诺依曼体系结构 (Von Neumann Architecture) 注意事项 存储器的意义&#xff1a;缓冲 数据流动示例 二. 操作系统 (Operating System) 操作系统的概念 操作系统的定位与目的 操作系统的管理 系统调用和库函数 操作系统的管理&#xff1a; sum 三. 系统调…