【Matlab】-- BP反向传播算法

在这里插入图片描述
文章目录

文章目录

  • 00 写在前面
  • 01 BP算法介绍
  • 02 基于Matlab的BP算法
  • 03 代码解释

00 写在前面

BP算法可以结合鲸鱼算法、飞蛾扑火算法、粒子群算法、灰狼算法、蝙蝠算法等等各种优化算法一起,进行回归预测或者分类预测。

01 BP算法介绍

BP(Backpropagation,反向传播)算法是一种用于训练人工神经网络的监督学习算法。它是基于梯度下降法,通过反向传播误差来调整网络的权值和阈值,以最小化输出误差。BP算法是神经网络领域最经典和广泛使用的算法之一。

02 基于Matlab的BP算法

%% 输入
% x:一个个体的初始权值和阈值
% P_train:训练样本输入
% T_train:训练样本输出
% hiddennum:隐含层神经元数
% P_test:测试样本输入
% T_test:测试样本期望输出
%% 输出
% err:预测样本的预测误差的范数function [err,T_sim]=BpFunction1(x,P_train,T_train,hiddennum,P_test,T_test)
inputnum=size(P_train,2);                             % 输入层神经元个数
% hiddennum=2*inputnum+1;                           % 隐含层神经元个数
outputnum=size(T_train,2);                                % 输出层神经元个数%% 数据归一化
[p_train,ps_train]=mapminmax(P_train',0,1);
p_test=mapminmax('apply',P_test',ps_train);
[t_train,ps_output]=mapminmax(T_train',0,1);%% 开始构建BP网络
net=newff(p_train,t_train,hiddennum);               %隐含层为hiddennum个神经元
%设定参数网络参数
net.trainParam.epochs=1000;
net.trainParam.goal=1e-3;
net.trainParam.lr=0.01;
net.trainParam.showwindow=false;                    %高版MATLAB使用 不显示图形框%% BP神经网络初始权值和阈值
w1num=inputnum*hiddennum;                                           %输入层到隐层的权值个数
w2num=outputnum*hiddennum;                                          %隐含层到输出层的权值个数
% x=2*rand(1,w1num+hiddennum+w2num+outputnum)-1;                      %随即生成权值
W1=x(1:w1num);                                                      %初始输入层到隐含层的权值
B1=x(w1num+1:w1num+hiddennum);                                      %隐层神经元阈值
W2=x(w1num+hiddennum+1:w1num+hiddennum+w2num);                      %隐含层到输出层的权值
B2=x(w1num+hiddennum+w2num+1:w1num+hiddennum+w2num+outputnum);      %输出层阈值
net.iw{1,1}=reshape(W1,hiddennum,inputnum);                         %为神经网络的输入层到隐含层权值赋值
net.lw{2,1}=reshape(W2,outputnum,hiddennum);                        %为神经网络的隐含层到输出层权值赋值
net.b{1}=reshape(B1,hiddennum,1);                                   %为神经网络的隐层神经元阈值赋值
net.b{2}=reshape(B2,outputnum,1);                                   %为神经网络的输出层阈值赋值%% 开始训练
net = train(net,p_train,t_train);%% 测试网络
t_sim = sim(net,p_test);
T_sim = mapminmax('reverse',t_sim,ps_output);   %反归一化
T_sim=T_sim';
err=norm(T_sim-T_test);                         %预测结果与测试结果差的范数,范数越小说明预测得越准确,如果范数为0,说明预测得完全准确

03 代码解释

输入参数

  • x:一个包含神经网络初始权值和阈值的向量。
  • P_train:训练样本的输入数据。
  • T_train:训练样本的输出数据。
  • hiddennum:隐含层神经元的个数。
  • P_test:测试样本的输入数据。
  • T_test:测试样本的期望输出。

输出参数

  • err:预测误差的范数。
  • T_sim:测试样本的预测输出。

步骤

  1. 初始化参数

    • 计算输入层和输出层神经元的个数。
  2. 数据归一化

    • 使用 mapminmax 对训练和测试数据进行归一化处理。
  3. 创建神经网络

    • 使用 newff 创建一个BP神经网络,设置隐含层神经元个数。
  4. 设置网络训练参数

    • 设定最大训练次数,训练目标误差和学习率。
  5. 初始化权值和阈值

    • 从输入参数 x 中提取初始权值和阈值,并赋值给网络。
  6. 训练神经网络

    • 使用训练数据训练网络。
  7. 测试神经网络

    • 用测试数据进行预测,并反归一化预测结果。
    • 计算预测误差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/857646.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JMeter的基本使用与性能测试,完整入门篇保姆式教程

Jmeter 的简介 JMeter是一个纯Java编写的开源软件,主要用于进行性能测试和功能测试。它支持测试的应用/服务/协议包括Web (HTTP, HTTPS)、SOAP/REST Webservices、FTP、Database via JDBC等。我们最常使用的是HTTP和HTTPS协议。 Jmeter主要组件 线程组&#xff08…

Flutter Android 调试桥 (adb)

客户端:用于发送命令。客户端在开发计算机上运行。您可以通过发出 adb 命令从命令行终端调用客户端。 守护程序adbd:用于在设备上运行命令。守护程序在每个设备上作为后台进程运行。 服务器:用于管理客户端与守护程序之间的通信。服务器在开…

移动端的HSR技术

overdraw问题: overdraw顾名思义就是过度绘制,就是在渲染过程中**绘制一帧FBO(或者RenderTarget)**超过一次相同像素的现象!这个是CG的问题!特别在是用来大量的透明混合的情况下会产生的,当然客户端andrio…

mysql分析常用锁、动态监控、及优化思考

这里写自定义目录标题 1.未提交事物,阻塞DDL,继而阻塞所有同表的后续操作,查看未提交事务的进程2.存着正在进行的线程数据。3.根据processlist表中的id杀掉未释放的线程4.查看正在使用的表5.mysql为什么state会有waiting for handler commit6.什么情况导…

intouch的报警怎么发到企业微信机器人

厂务报警通知系列博客目录 intouch的报警怎么发到微信上 intouch的报警怎么发到邮件上 intouch的报警怎么发到短信上 intouch的报警怎么发到企业微信机器人 intouch的报警怎么发到飞书机器人 intouch的报警怎么用语音通知到手机用户 创建企业微信群机器人 打开企业微信客…

【AI-6】算力和带宽

上述为大模型训练的显卡选项 tensor fp16 算力是什么? Tensor FP16(Float16)算力是指GPU在执行深度学习的张量计算时,使用float16(半精度浮点)数据类型所能达到的性能指标。 为什么要使用Tensor FP16? 提升计算效率: float16数据类型的存储和计算开销比float32…

网格布局之跨行越列

网格布局之跨行越列 欢迎关注:xssy5431 小拾岁月 参考链接:https://mp.weixin.qq.com/s/xStfSmewncTW49N0Y_Vhow 点击查看 使用场景 在常见的页面布局中,我们往往会遇到那种类似合并单元格的布局。比如:成绩排名、产品排名等等…

第10关:视图1 、第11关:视图2 、第12关:用户。

目录 第10关:视图1 任务描述 知识补充 答案 第11关:视图2 任务描述 知识补充 答案 第12关:用户 任务描述 知识补充 答案 本篇博客声明:所有题的答案不在一起,可以去作者博客专栏寻找其它文章。 第10关&…

计算机网络(物理层)

物理层 物理层最核心的工作内容就是解决比特流在线路上传输的问题 基本概念 何为物理层?笼统的讲,就是传输比特流的。 可以着重看一下物理层主要任务的特性 传输媒体 传输媒体举例: 引导型传输媒体 引导型传输媒体指的是信号通过某种…

调试器烧录失败的几种常见解决办法

目录 1. 检查接线、Keil配置是否正确 2. 降低下载速度 3. SWD引脚被禁用或被复用为其他功能 4. 使用CubeMX生成的工程,无法调试? 5. 能识别到芯片但是下载时弹出报错对话框(Command not supported) 6. 内部flash锁死&#x…

空间复杂度 线性表,顺序表尾插。

各位少年,大家好,我是那一脸阳光,本次分享的主题是时间复杂度和空间复杂度 还有顺序表文章讲解和分享,如有不对可以评论区指导。 时间复杂度例题 // 计算斐波那契递归Fib的时间复杂度? long long Fib(size_t N){if(N…

读AI新生:破解人机共存密码笔记05逻辑

1. 困难问题 1.1. 管理政府或教授分子生物学之类的问题要困难得多 1.2. 这些环境很复杂,大部分是不可观察的(一个国家的状态,一个学生的思想状态),还有更多的对象和对象类型,对动作…

嵌入式通信协议----Wi-Fi协议详解(二)(基于STM32+有人物联网WIFI模块)

四、有人WIFI模块 1.模块介绍 Wi-Fi 模块用于实现串口到 Wi-Fi 数据包的双向透明转发,模块内部完成协议转换,通 过该模块,客户可以将物理设备连接到 Wi-Fi 网络上,从而实现物联网的控制与管理。 2.模块参数 Wi-Fi 模块的…

Apple - Text System Storage Layer Overview

本文翻译整理自:Text System Storage Layer Overview(更新日期:2012-09-19 https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/TextStorageLayer/TextStorageLayer.html#//apple_ref/doc/uid/10000087i 文章目录 …

WebSocket走私实践(附赠LiveGBS监控系统未授权管理员密码重置)

WebSocket走私实践(附赠LiveGBS监控系统未授权管理员密码重置) 对此,我特别感谢TryHackMe和HackTheBox academy,永远相信和追随英国TryHackMe所教导的网络安全知识,并保持学习 WebSocket走私相关的知识在这里 前段时间学习过htt…

小程序 UI 设计缔造独特魅力

小程序 UI 设计缔造独特魅力

qt 简单实验 一个可以向右侧拖拽缩放的矩形

1.概要 目的是设置一个可以拖拽缩放的矩形,这里仅用右侧的一个边模拟这个过程。就是为了抓住核心,这个便解决了,其他的边也是一样的。而这个更能体现原理。 2.代码 2.1 resizablerectangle.h #ifndef RESIZABLERECTANGLE_H #define RESIZ…

grafana 通过自定义API获取数据

一、安装插件 安装infinity插件 二、配置数据源 三、配置图表 1、数据 这边提供一个go的demo package mainimport ("math/rand""net/http""time""github.com/gin-gonic/gin" )func main() {router : gin.Default()rand.Seed(time.…

怎样去掉卷子上的答案并打印

当面对试卷答案的问题时,一个高效而简单的方法是利用图片编辑软件中的“消除笔”功能。这种方法要求我们首先将试卷拍摄成照片,然后利用该功能轻松擦除答案。尽管这一方法可能需要些许时间和耐心,但它确实为我们提供了一个可行的解决途径。 然…

【2024.6.22】今日科技时事:科技前沿大事件

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…