Linux系统:线程概念 线程控制

Linux系统:线程概念 & 线程控制

    • 线程概念
      • 轻量级进程 LWP
      • 页表
    • 线程控制
      • POSIX 线程库 - ptherad
      • 线程创建
        • pthread_create
        • pthread_self
      • 线程退出
        • pthread_exit
        • pthread_cancel
        • pthread_join
        • pthread_detach
    • 线程架构
      • 线程与地址空间
      • 线程与pthread动态库
    • 线程的优缺点


线程概念

假设某个进程要在输出1 - 10的同时,让另外一个执行流去输出11 - 20,应该怎么办?

如果从进程的角度出发,我们可以创建一个子进程,让父子进程同时跑,比如这样:

int main()
{pid_t id = fork();//子进程if (id == 0){for (int i = 1; i <= 10; i++){cout << i << endl;sleep(1);}exit(0);}//父进程for (int i = 11; i <= 20; i++){cout << i << endl;sleep(1);}return 0;
}

输出结果:

在这里插入图片描述

这样确实可以做到让两个执行流同时运行,从而提高效率,但是代价太大了。这种方式是通过创建一个子进程实现的,而一个进程需要额外创建PCB进程地址空间页表等等。

CPU调度进程的时候,本质是在调度进程的PCB,把进程的PCB放到运行队列中,然后CPU依次执行队列中的进程。也就是说,如果我们想要让一个进程被CPU多次执行,从而让一个进程有多个执行流,只需要创建更多的PCB就可以了。在没学习到线程前,我们认为一个进程只有一个PCB,实则不然,一个进程可以有多个PCB(仅对Linux而言)。

而对于同一个进程的每一个PCB,都算作一个线程

在这里插入图片描述

线程是进程内部的一个执行分支,是CPU调度的基本单位

每个线程都会拿到同一个进程的不同部分代码,从而让多个区域的代码一起执行,提高进程的效率。

我们再辨析一下进程线程的关系:

在这里插入图片描述

进程 = 内核数据结构 + 代码和数据

上图中,多个PCB进程地址空间页表等都属于进程的内核数据结构,因此这些所有内容加起来,才算做进程

进程是承担系统资源分配的基本实体

因为多个线程是共享地址空间,页表等等,所以一个线程不可能去承担系统的资源分配,反而来说,线程是被分配资源的。操作系统分配资源时,以进程为单位,当一个进程拿到资源后,再去分配给不同的线程


轻量级进程 LWP

其实我刚刚的所有描述,都是针对Linux而言的。大部分操作系统的处理线程的方式,并不是直接创建多个PCB,而是额外设计了一个TCB (Thread Contrl Block)

在这里插入图片描述

多个TCB分别控制不同部分的代码,CPU调度线程时,也去调度TCB。比如主流的WindowsMacOS等操作系统,都是这样做的。

但是Linux认为:PCB就已经可以被CPU调度了,进程调度已经有一套很完善的体系了,如果再额外给线程设计一套线程的调度解决方案,未免太多余了。因此Linux中没有设计TCB这样的结构,而是直接复用PCB来实现线程

Linux中,一个进程可以有多个PCBPCB的数目为1,那么这个PCB可以代表一个进程;如果PCB数目有多个,那么这个PCB代表一个进程的多个线程

因此在Linux中,没有真正的线程,一个执行流由一个PCB维护。一个执行流既有可能表示一个进程,也有可能表示一个线程。Linux把这种介于线程进程之间的状态,称为轻量级进程 LWP (Light Weight Process)

Linux中所有对线程的操作,本质都是对轻量级进程的操作

接下来在一个进程内部创建两个线程,观察一些现象。如何创建线程,在本博客的线程控制部分会讲解,现在大家只需要观察现象,知道我的一个进程内部有两个线程即可。

在这里插入图片描述

上图中,为两个线程同时输出,第一个线程输出I am thread - 1,第二个线程输出I am thread - 2

我们先通过 ps -ajx观察一下进程test.exe的状态:

在这里插入图片描述

看可以看到只有一个进程,PID = 141776,也就是这两个线程同属于一个进程。

如果想要观察线程,需要指令ps -aL

在这里插入图片描述

可以看到,确实是有两个叫做test.exe线程的,它们的PID都是141776,但是它们的LWP不同。一个LWP = 141776,另外一个LWP = 141777,而LWP就是我们刚刚说的轻量级进程。

另外的,你会发现第一个线程的PID = LWP = 141776,说明这个线程是主线程,其余的所有线程都是这个主线程创造的。


页表

那么进程是如何实现把资源分配给多个线程的呢?这就要谈一谈页表了。

先看一看内存磁盘是如何管理的:

在这里插入图片描述

不论是内存还是磁盘,都被划分为了以4kb为单位的数据块,一个数据块可以被称为页框 / 页帧

操作系统管理内存,或者管理磁盘,都是以4kb为基本单位的。比如把磁盘中的数据加载到内存中,就是以4kb为基本单位进行拷贝。

页框是被struct page管理的,Linxu 2.6.10中,struct page源码如下:

struct page 
{page_flags_t flags;		atomic_t _count;		atomic_t _mapcount;	unsigned long private;		struct address_space *mapping;pgoff_t index;struct list_head lru;	#if defined(WANT_PAGE_VIRTUAL)void *virtual;	
#endif 
};

操作系统想要管理所有的页框,只需要创建一个数组,数组的元素类型是struct page。此时操作系统对内存或磁盘的管理,就变成了对数组的增删查改。而且从上方的struct page源码中可以发现,它是不存储页框的起始地址和终止地址的,因为可以通过下标计算出起始地址,起始地址 + 4kb就可以求出终止地址。

那么这个页框页表有什么关系呢?

我们以32位操作系统为例,页表的结构如下:

在这里插入图片描述

页表的任务是把虚拟地址解析为物理地址,当传入一个虚拟地址,页表就要对其解析。一个32位的地址,会被分为三部分,第一部分是前10位,第二部分是中间10位,第三部分是末尾12位。

第一部分就是上图中的深蓝色部分,其由页目录进行解析。 2 10 = 1024 {\color{Red} 2 ^ {10} = 1024} 210=1024,即前10位地址有1024种可能,而页目录就是一个长度为1024的数组。解析地址时,先通过前10位,在页目录中找到对应的下标。每个页目录的元素,指向一个页表

第二部分是上图中的黄色部分,其由页表进行解析,同样的 2 10 = 1024 {\color{Red} 2 ^ {10} = 1024} 210=1024,即中间10位地址也1024种可能,所以每个页表的长度也是1024。解析中间10位时,在页表中找到对应的下标,从而找到对应的内存。

第三部分时上图中的绿色部分。还记得吗,一个数据块的大小是4 kb,这是内存管理的基本单位。而 2 12 b y t e = 4 k b {\color{Red} 2 ^ {12} byte = 4 kb} 212byte=4kb,而第三部分就是12位!因此第三部分也叫做页内偏移,通过前两个部分,我们已经可以锁定到内存中的一个页框了,而第三部分存储的是物理地址相对于页框起始地址的偏移量,此时就可以根据起始地址 + 偏移量来确定一个地址。

以上就是页表解析地址的全过程。

那么这和线程的资源分配有什么关系呢?

我们可以看到,一个页目录把整个页表划分为了1024部分。

给不同线程分配进程不同的区域,本质就是让不同进程看到页表的不同子集


线程控制

POSIX 线程库 - ptherad

讲完基本概念后,我们再看看如何控制线程。Linux控制线程,是通过原生线程库pthread的。

Linux中本质上是没有线程的,而是通过轻量级进程来模拟线程。因此 Linux 没有线程相关的系统调用接口,而是轻量级进程的系统调用接口。为了让用户感觉自己在操控线程,因此所有Linux系统都会必须配套一个 原生线程库 pthread,将轻量级进程的系统调用,封装为线程的操控,让用户感觉自己在操控线程。

之所以叫做原生线程库,就是因为所有Linux系统必须配备这个库,是原生的。因为属于用户操作接口的范围,所以Linux的线程也叫做用户级线程

在使用gcc / g++编译时,要带上选项-l pthread,来引入原生线程库

例如:

g++ -o test.exe test.cpp -l pthread

那么简单了解什么是线程库后,接下来就要讲解线程相关接口了。

在讲解接口前,先铺垫一个概念:TID,所有线程库对线程的操作,都是基于TID的。这个TID用于标识一个唯一的线程。TIDLWP不是一个东西,不要搞混

TID的数据类型是pthread_t

线程创建

pthread_create

ptherad_create函数用于创建一个线程,需要头文件<pthread.h>,函数原型如下:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);

参数:

  • thread:输出型参数,输出创建出来的线程的TID
  • attr:设置线程的状态,这个不用管,设为nullptr即可
  • start_routine:类型为void* (*)(void*)线程执行的函数的函数指针
  • arg:用于给新的线程传递参数,也就是给函数start_routine传参,该函数的第一个参数为void*类型,arg也是void*

返回值:

  • 如果创建成功,返回0
  • 如果创建失败,返回错误码

示例:

void *threadRun(void *args)
{string name = (char *)args;while (true){cout << name << endl;sleep(1);}return nullptr;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRun, (void *)"thread - 1");while (true){cout << "thread - main" << endl;sleep(1);}return 0;
}

以上代码中,先创建一个pthread_t类型的tid,随后通过pthread_create创建一个线程。

  • 第一个参数&tid,即创建线程后把该线程的TID输出到变量tid中;
  • 第二个参数nullptr,不用管;
  • 第三个参数threadRun,即创建出来的线程去执行这个函数;
  • 第四个参数(void *)"thread - 1",即函数threadRun的第一个参数传入一个字符串,由于参数类型是void*,要进行一次类型转换。

随后主线程循环输出"thread - main",创建的线程把参数args提取出来变成stringstring name = (char *)args;,再输出这个string

输出结果:

在这里插入图片描述

现在就有两个线程同时在跑了,而且我们成功把字符串thread - 1通过参数传给了新创建的线程。


pthread_self

ptherad_self函数用于得到当前线程的TID,需要头文件<pthread.h>,函数原型如下:

pthread_t pthread_self(void);

返回值:当前线程的TID


线程退出

讲解线程退出的相关接口前,我们来看一个实验:

如果某个线程调用exit接口,会发生什么

代码:

void *threadRun(void *args)
{string name = (char *)args;int cnt = 3;while (cnt--){cout << name << endl;sleep(1);}exit(0);return nullptr;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRun, (void *)"thread - 1");while (true){cout << "thread - main" << endl;sleep(1);}return 0;
}

以上代码十分简单,就是在刚才的代码中多加了一句exit而已。主线程创建完线程后,死循环输出thread - main。而创建出来的线程在输出三次thread - 1后通过exit退出。

按理来说,创建出来的线程通过exit退出后,此时就只剩主线程了,于是一直循环输出thread - main。所以预测现象为:输出三次thread - 1后,剩下的全是thread - main

输出结果:

在这里插入图片描述

奇怪的现象发生了,当thread - 1通过exit退出后,主线程也退出了。

exit接口的作用,是终止整个进程,任意一个线程调用该接口,所有线程都会退出

因此我们不能通过exit来退出一个线程

pthread_exit

ptherad_exit函数用于退出当前线程,需要头文件<pthread.h>,函数原型如下:

void pthread_exit(void *retval);

pthread_create时,线程执行的函数类型就是void* (*)(void*)也就是说线程调用的函数返回值是void*。退出线程pthread_exit时,第一个参数retval就是用于指定这个返回值的。


pthread_cancel

ptherad_cancel函数用于在主线程中指定退出一个线程,需要头文件<pthread.h>,函数原型如下:

int pthread_cancel(pthread_t thread);

参数:thread是要杀掉的线程的TID


pthread_join

线程和进程一样,也有等待的机制,用于获取线程的退出信息,这个过程叫做线程等待,而线程等待就是通过pthread_join完成的。

pthread_join函数用于等待一个线程,需要头文件<pthread.h>,函数原型如下:

int pthread_join(pthread_t thread, void **retval);

参数:

  • thread:等待的线程的TID
  • retval:输出型参数,线程退出后,该参数会接收到线程的函数返回值

返回值:

  • 等待成功:返回0
  • 等待失败:返回错误码

ptherad_join会进行阻塞式等待

示例:

void* threadRun(void* args)
{string name = (char*)args;int cnt = 3;while (cnt--){cout << name << endl;sleep(1);}return (void*)12345;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRun, (void*)"thread - 1");void* ret;pthread_join(tid, &ret);cout << "return value = " << (long long) ret << endl;return 0;
}

以上代码中,创建的线程输出三次"thread - 1"后退出,返回值为数字12345。主线程中通过join等待这个线程,并把返回值保存到变量ret中。随后输出这个结果,因为ret是指针,输出时先转为long long再输出。

输出结果:

在这里插入图片描述

可以看到,主线程成功通过pthread_join拿到了线程的返回值。

如果我们通过pthread_exit终止线程,该函数的第一个参数就是函数返回值,那么pthread_join得到的返回值就是pthread_exit的参数。

但是如果通过pthread_cancel终止线程,由于该函数没有指定线程的返回值,此时pthread_join得到的返回值是固定值PTHREAD_CANCELED其值为void*-1


pthread_detach

线程都是要被释放的,如果一个线程退出后没有被pthread_join,就会造成内存泄漏。但是如果你真的不希望去回收一个线程,你可以进行线程分离,被分离的线程,退出后会自己回收自己

pthread_detach函数用于分离一个线程,需要头文件<pthread.h>,函数原型如下:

int pthread_detach(pthread_t thread);

参数:thread是被分离的线程的TID

返回值:

  • 分离成功:返回0
  • 分离失败:返回错误码

一个线程被分离后,不允许再被pthread_join等待,等待会发生错误

pthread_detach既可以在主线程中对创建出来的线程使用,也可以线程自己对自己使用。

我们以后者作为示例:

void *threadRun(void *args)
{pthread_detach(pthread_self());while(true) ;return (void*)12345;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRun, (void *)"thread - 1");cout << "join..." << endl;int ret = pthread_join(tid, nullptr);cout << ret << ": " << strerror(ret) << endl;return 0;
}

以上代码中,在线程的函数中,自己分离自己pthread_detach(pthread_self()),随后创建的线程陷入死循环。

主线程中,强行pthread_join这个已经分离的函数,并输出错误码。

输出结果:

在这里插入图片描述

可以看到,由于等待了一个已经分离的线程,此时pthread_join的返回值就是22号错误Incalid argument


线程架构

线程与地址空间

在这里插入图片描述

依然是这一张图,我们之前一直没有讨论一个问题,那就是所有的线程共享一个进程地址空间。这意味着多个线程是可以访问同一个变量的,比如说一个全局变量g_val,我们可以在任意一个线程中访问它,一个线程修改了这个值,其余的线程的g_val也会受到影响。

示例:

int g_val = 5;void* threadRun(void* args)
{cout << "g_val = " << g_val << "  &g_val = " << &g_val << endl;return nullptr;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRun, nullptr);sleep(1);cout << "g_val = " << g_val << "  &g_val = " << &g_val << endl;return 0;
}

以上代码中,先创建了一个全局变量g_val,随后创建一个线程。

主线程与被创建的线程,都输出g_val的值与g_val的地址。

输出结果:

在这里插入图片描述

两个线程的g_val不论是值还是地址,都是一模一样的,说明就是同一个g_val

如果你希望对于一个变量,每个线程都维护一份,互不影响,此时可以使用线程局部存储

只需要在变量前面使用__thread(注意前面有两条下划线)修饰即可,比如这样:

__thread int g_val = 5;

再次输出:

在这里插入图片描述

这次两个线程的g_val地址就不同了。

当然,线程之间不是啥都共享的,也有各自独立的部分:

  1. 线程PID
  2. 一组寄存器 / 硬件上下文:因为线程是调度的基本单位,线程调度是需要上下文来记录自己的调度相关信息的,这个必须每个线程各自一份
  3. 栈帧:也是因为线程是调度的基本单位,每个线程都在执行自己的函数栈,这个栈也是各自独立
  4. errno:线程之间的错误码各自独立
  5. 信号屏蔽字:当一个进程收到信号,此时所有线程都会收到信号,但是每个线程的处理方式可以不同,就是通过每个线程独自维护一份block达到的
  6. 调度优先级:同理,因为线程是调度的基本单位,线程之间可以有不同的优先级

线程与pthread动态库

我先前说过,线程的控制是通过pthread库实现的,毫无疑问pthread是一个动态库。线程需要被结构体描述,同时再被数据结构组织,这样才好管理一群线程,这个任务是pthread库完成的。

如下图:

在这里插入图片描述

pthread库中,通过结构体struct pthread来管理一个线程,在这给结构体中会存储很多线程之间独立的部分。我们刚讲过的线程局部存储栈帧TID,这几个部分就是保存在struct pthread中的

还记得我们在说过,TID是一个线程的唯一标识符吗?我们来输出一下这个TID试试:

int main()
{cout << pthread_self() << endl;return 0;
}

直接通过pthread_self拿到自己的TID,然后输出。

输出结果:

在这里插入图片描述

可以发现,这是一个很大很大的数字,这是为啥?

TID就是线程的struct pthread在内存中的物理地址

你不妨想想,为什么所有对线程的操作中,基本都带上了参数TID,因为通过TID,线程可以直接找到对应的物理地址,从而访问线程的更多信息

Linux中,标识一个轻量级进程是通过LWP完成的,struct pthread内部,一定有一个成员是该线程对应的轻量级进程LWP,进而完成用户操作线程库操作轻量级进程的转换


线程的优缺点

线程有如下优点

创建一个新线程的代价要比创建一个新进程小得多

创建一个线程只需要额外创建一个PCB,进程地址空间,页表等都和别的线程共用,因此创建线程代价很小

与进程之间的切换相比,线程之间的切换需要操作系统做的工作要少很多

由于线程共用进程地址空间和页表,在CPU切换调度的PCB时,如果两个PCB属于同一个进程的不同线程,那么它们的进程地址空间和页表都不用更新,因为它们共用,此时CPU就可以少加载很多数据。

在等待慢速I/O操作结束的同时,程序可执行其他的计算任务

一般来说,I/O是很慢的操作,如果主线程一直等待I/O,效率就会很低下。这种需要阻塞等待的任务,建议创建其它线程,让其他线程去做。这样I/O对程序的运行效率影响就低很多,因为等待I/O的同时,主线程可以去做其他任务。

计算密集型应用,为了能在多处理器系统上运行,将计算分解到多个线程中实现

所谓计算密集型应用,就是该程序主要功能是利用CPU进行计算。此时线程个数不建议太多,因为线程的调度也是需要消耗CPU资源的,此时最好让CPU多执行计算,而不是去频繁调度。

I/O密集型应用,为了提高性能,将I/O操作重叠。线程可以同时等待不同的I/O操作。

所谓I/O密集型应用,就是说程序大部分时间都在I/O,此时建议多创建一些线程,让线程去I/O

线程缺点如下

  1. 线程的频繁调度也要消耗资源,可能会和计算争夺CPU资源,导致计算效率降低,比如计算密集型应用就不太适合创建太多线程
  2. 程序健壮性降低,因为多线程的代码很难维护,不好控制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/856568.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何恢复苹果手机数据?盘点3个实用恢复方法!

苹果手机数据丢失固然是一件很痛心的事&#xff0c;但是在这个信息发达的网络时代&#xff0c;想要恢复数据其实也并不复杂。只要用对方法&#xff0c;是有很大概率能够恢复的。那么针对iPhone用户来说&#xff0c;苹果数据恢复的方法是什么呢&#xff1f;下来让我们一起来看看…

go sync包(一) 互斥锁(一)

Sync包 sync包是go提供的用于并发控制的方法&#xff0c;类似于Java的JUC包。 &#xff08;图片来自《go设计与实现》&#xff09; 互斥锁 Mutex Go 语言的 sync.Mutex 由两个字段 state 和 sema 组成。 state 表示当前互斥锁的状态。sema 是用于控制锁状态的信号量。 ty…

java读取wps嵌入式图片思路

这个只写了思路具体代码在文章最后&#xff0c;不想了解得直接去拿代码 了解Excel数据结构 Excel 文件格式后缀xls,xlsx 其实是一个压缩文件&#xff0c;是由多个文件夹以及xml 文件组合为一个文件&#xff0c;xml文件记录了Excel得内容以及样式等信息。加入在桌面新建一个xls…

【PL理论】(34) 类型系统:不完备性 | 为什么推导树推导失败? | 实现类型系统 | 调整到类型系统 | 思考:强制程序员写类型还是自动推断类型?

&#x1f4ac; 写在前面&#xff1a;回顾我们的目标是为 F- 语言设计一个完备但不完全的类型系统&#xff0c;本章我们探讨的主题是类型系统的完备性。 目录 0x00 类型系统的不完备性 0x01 为什么推导树推导失败&#xff1f; 0x02 实现类型系统 0x03 调整到类型系统 0x04…

动态轮换代理在多账户管理中有何用处?

如果您要处理多个在线帐户&#xff0c;选择正确的代理类型对于实现流畅的性能至关重要。但最适合这项工作的代理类型是什么&#xff1f; 为了更好地管理不同平台上的多个账户并优化成本&#xff0c;动态住宅代理IP通常作用在此。 一、什么是轮换代理&#xff1f; 轮换代理充当…

德语中常见的日常用语,柯桥哪里可以学德语

Das kommt mir spanisch vor. &#xff08;直译&#xff1a;这对我来说很西班牙。&#xff09; Das kommt mir spanisch vor. Man findet etwas seltsam und ist unsicher, was man glauben soll. 这对我来说很西班牙。 某物让人觉得很稀奇&#xff0c;人们不确定自己该相…

泰山众筹:电商创新模式引领双赢时代

一、泰山众筹&#xff1a;电商领域的新星 泰山众筹&#xff0c;作为电商领域的一股创新力量&#xff0c;凭借其独特的商业模式在市场中崭露头角。这一模式巧妙地将产品销售与积分众筹融为一体&#xff0c;为用户和平台创造了互利共赢的机遇。在泰山众筹的平台上&#xff0c;用…

北方高温来袭!动力煤却不涨反跌的原因分析

内容提要 北方高温而南方降雨偏多的格局或将继续&#xff0c;整体水力发电量增长可能继续明显增长&#xff0c;但火电增幅可能继续缩小。5月重点火电厂的发电量和耗煤量增速均呈现负增长&#xff0c;耗煤量月度同比下降7%&#xff0c;而重点水电同比大增近40%。我国电力行业绿…

2020年中国1km格网耕地破碎度数据集

摘要 耕地破碎度是对耕地破碎化的定量描述&#xff0c;耕地破碎化是指由于自然或人为因素&#xff0c;耕地图斑数量增加&#xff0c;斑块大小减小&#xff0c;隔离程度增加&#xff0c;呈现出分散和无序格局。破碎化不仅会影响生态系统的结构和功能&#xff0c;同时不利于提高耕…

深度学习模型训练中 学习率参数 设置大小问题及设置合适值

&#x1f4aa; 专业从事且热爱图像处理&#xff0c;图像处理专栏更新如下&#x1f447;&#xff1a; &#x1f4dd;《图像去噪》 &#x1f4dd;《超分辨率重建》 &#x1f4dd;《语义分割》 &#x1f4dd;《风格迁移》 &#x1f4dd;《目标检测》 &#x1f4dd;《暗光增强》 &a…

聊聊探索性测试

探索性测试定义及来源&#xff1a;​ 特意度娘了一下&#xff0c;探索性测试的定义&#xff1a; 探索性测试可以说是一种测试思维技术。它没有很多实际的测试方法、技术和工具&#xff0c;但是却是所有测试人员都应该掌握的一种测试思维方式。探索性强调测试人员的主观能动性…

机房布线新方案:数字化运维如何助力企业高效腾飞

随着信息量的激增&#xff0c;传统的机房布线管理方式已经难以满足现代化企业的需求&#xff0c;存在着“视觉混乱、记录不准”等严重问题&#xff0c;这不仅影响了机房运维的效率&#xff0c;更对企业的数据安全构成了潜在威胁。然而&#xff0c;随着耐威迪数字化运维管理方案…

工业AIoT竞赛

模块一&#xff1a;工业物联环境构建 # 查看节点状态 kubectl get nodes # 查看所有 pods 状态 kubectl get pods --all-namespaces cd /data/script/ ls | grep install_openyurt_manager # ./install_openyurt_manager_v5.sh是搜索到的脚本文件 ./install_openyurt_manager_v…

校园疫情防控健康打卡系统

摘 要 自疫情出现以来&#xff0c;全世界人民的生命安全和健康都面临着严重威胁。高校是我国培养人才的重要基地&#xff0c;其安全和稳定影响着社会的发展和进步。因此&#xff0c;各高校高度重视疫情防控工作&#xff0c;并在校园疫情防控中引入了健康打卡系统。本论文主要研…

RISC_CPU模块的调试

代码&#xff1a; cpu.v include "clk_gen.v" include "accum.v" include "adr.v" include "alu.v" include "machine.v" include "counter.v" include "machinectl.v" include "register.v&quo…

小兔鲜02

elementplus自动按需引入 elementplus主题色定制 安装sass npm install sass -D要替换的主题色内容&#xff1a; /* 只需要重写你需要的即可 */ forward element-plus/theme-chalk/src/common/var.scss with ($colors: (primary: (// 主色base: #27ba9b,),success: (// 成功…

【前端项目笔记】4 权限管理

权限管理 效果展示&#xff1a; &#xff08;1&#xff09;权限列表 &#xff08;2&#xff09;角色列表 其中的分配权限功能 权限列表功能开发 新功能模块&#xff0c;需要创建新分支 git branch 查看所有分支&#xff08;*表示当前分支&#xff09; git checkout -b ri…

审稿人:拜托,请把模型时间序列去趋势!!

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 时间序列分析是数据科学中一个重要的领域。通过对时间序列数据的分析&#xff0c;我们可以从数据中发现规律、预测未来趋势以及做出决策…

web中间件漏洞-Resin漏洞-密码爆破、上传war

web中间件漏洞-Resin漏洞-密码爆破、上传webshell 使用爆破结果resin/resin进入后台&#xff0c;选择deploy。想部署webshell,得使用SSL方式请求&#xff0c;访问https://192.168.1.2:8443/resin-admin/index.php?qdeploy&s0(注&#xff1a;如果使用最新的火狐浏览器或者谷…

[论文笔记]Are Large Language Models All You Need for Task-Oriented Dialogue?

引言 今天带来论文Are Large Language Models All You Need for Task-Oriented Dialogue?的笔记。 主要评估了LLM在完成多轮对话任务以及同外部数据库进行交互的能力。在明确的信念状态跟踪方面&#xff0c;LLMs的表现不及专门的任务特定模型。然而&#xff0c;如果为它们提…