多分类中混淆矩阵的TP,TN,FN,FP计算

关于混淆矩阵,各位可以在这里了解:混淆矩阵细致理解_夏天是冰红茶的博客-CSDN博客

上一篇中我们了解了混淆矩阵,并且进行了类定义,那么在这一节中我们将要对其进行扩展,在多分类中,如何去计算TP,TN,FN,FP。

原理推导

这里以三分类为例,这里来看看TP,TN,FN,FP是怎么分布的。

类别1的标签:

类别2的标签:

类别3的标签:

这样我们就能知道了混淆矩阵的对角线就是TP

TP = torch.diag(h)

 假正例(FP)是模型错误地将负类别样本分类为正类别的数量

FP = torch.sum(h, dim=1) - TP

假负例(FN)是模型错误地将正类别样本分类为负类别的数量

FN = torch.sum(h, dim=0) - TP

最后用总数减去除了 TP 的其他三个元素之和得到 TN

TN = torch.sum(h) - (torch.sum(h, dim=0) + torch.sum(h, dim=1) - TP)

逻辑验证

这里借用上一篇的例子,假如我们这个混淆矩阵是这样的:

tensor([[2, 0, 0],
            [0, 1, 1],
            [0, 2, 0]])

为了方便讲解,这里我们对其进行一个简单的编号,即0—8:

012
345
678

torch.sum(h, dim=1) 可得 tensor([2., 2., 2.]) , torch.sum(h, dim=0) 可得 tensor([2., 3., 1.]) 。

  •  TP:   tensor([2., 1., 0.]) 
  •  FN:   tensor([0., 1., 2.]) 
  •  TN:   tensor([4., 2., 3.]) 
  •  FP:   tensor([0., 2., 1.])

我们先来看看TP的构成,对应着矩阵的对角线2,1,0;FP在类别1中占3,6号位,在类别2中占1,7号位,在类别3中占2,5号位,加起来即为0,1,2;TN在类别1中占4,5,7,8号位,在类别2中占边角位,在类别3中占0,1,3,4号位,加起来即为4,2,3;FN在类别1中占1,2号位,在类别2中占3,5号位,在类别3中占6,7号位,加起来即为0,2,1。

补充类定义

import torch
import numpy as npclass ConfusionMatrix(object):def __init__(self, num_classes):self.num_classes = num_classesself.mat = Nonedef update(self, t, p):n = self.num_classesif self.mat is None:# 创建混淆矩阵self.mat = torch.zeros((n, n), dtype=torch.int64, device=t.device)with torch.no_grad():# 寻找GT中为目标的像素索引k = (t >= 0) & (t < n)# 统计像素真实类别t[k]被预测成类别p[k]的个数inds = n * t[k].to(torch.int64) + p[k]self.mat += torch.bincount(inds, minlength=n**2).reshape(n, n)def reset(self):if self.mat is not None:self.mat.zero_()@propertydef ravel(self):"""计算混淆矩阵的TN, FP, FN, TP"""h = self.mat.float()n = self.num_classesif n == 2:TP, FN, FP, TN = h.flatten()return TP, FN, FP, TNif n > 2:TP = h.diag()FN = h.sum(dim=1) - TPFP = h.sum(dim=0) - TPTN = torch.sum(h) - (torch.sum(h, dim=0) + torch.sum(h, dim=1) - TP)return TP, FN, FP, TNdef compute(self):"""主要在eval的时候使用,你可以调用ravel获得TN, FP, FN, TP, 进行其他指标的计算计算全局预测准确率(混淆矩阵的对角线为预测正确的个数)计算每个类别的准确率计算每个类别预测与真实目标的iou,IoU = TP / (TP + FP + FN)"""h = self.mat.float()acc_global = torch.diag(h).sum() / h.sum()acc = torch.diag(h) / h.sum(1)iu = torch.diag(h) / (h.sum(1) + h.sum(0) - torch.diag(h))return acc_global, acc, iudef __str__(self):acc_global, acc, iu = self.compute()return ('global correct: {:.1f}\n''average row correct: {}\n''IoU: {}\n''mean IoU: {:.1f}').format(acc_global.item() * 100,['{:.1f}'.format(i) for i in (acc * 100).tolist()],['{:.1f}'.format(i) for i in (iu * 100).tolist()],iu.mean().item() * 100)

我在代码中添加了属性修饰器,以便我们可以直接的进行调用,并且也考虑到了二分类与多分类不同的情况。

性能指标

关于这些指标在网上有很多介绍,这里就不细讲了

class ModelIndex():def __init__(self,TP, FN, FP, TN, e=1e-5):self.TN = TNself.FP = FPself.FN = FNself.TP = TPself.e = edef Precision(self):"""精确度衡量了正类别预测的准确性"""return self.TP / (self.TP + self.FP + self.e)def Recall(self):"""召回率衡量了模型对正类别样本的识别能力"""return self.TP / (self.TP + self.FN + self.e)def IOU(self):"""表示模型预测的区域与真实区域之间的重叠程度"""return self.TP / (self.TP + self.FP + self.FN + self.e)def F1Score(self):"""F1分数是精确度和召回率的调和平均数"""p = self.Precision()r = self.Recall()return (2*p*r) / (p + r + self.e)def Specificity(self):"""特异性是指模型在负类别样本中的识别能力"""return self.TN / (self.TN + self.FP + self.e)def Accuracy(self):"""准确度是模型正确分类的样本数量与总样本数量之比"""return (self.TP + self.TN) / (self.TP + self.TN + self.FP + self.FN + self.e)def FP_rate(self):"""False Positive Rate,假阳率是模型将负类别样本错误分类为正类别的比例"""return self.FP / (self.FP + self.TN + self.e)def FN_rate(self):"""False Negative Rate,假阴率是模型将正类别样本错误分类为负类别的比例"""return self.FN / (self.FN + self.TP + self.e)def Qualityfactor(self):"""品质因子综合考虑了召回率和特异性"""r = self.Recall()s = self.Specificity()return r+s-1

参考文章:多分类中TP/TN/FP/FN的计算_Hello_Chan的博客-CSDN博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/85582.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AB包的依赖关系

1、什么是依赖关系 有时候一个模型所需要的东西可能在不同的包里面&#xff0c;例如蓝色立方体的模型和材质在不同的包&#xff08;mode和head&#xff09;里&#xff0c;这时需要加载两个包才能让这个球正常显示 2、如何获取依赖关系并加载 //加载AB包 AssetBundle ab Asse…

Manifest merger failed

编译报错&#xff1a;Manifest merger failed with multiple errors 定位编译错误&#xff1a;java.lang.RuntimeException: Manifest merger failed with multiple errors 近日&#xff0c;项目中需要引入一个module。在成功导入后&#xff0c;添加依赖到主模块上&#xff0c…

《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN)

LeNet、AlexNet和VGG的设计模式都是先用卷积层与汇聚层提取特征&#xff0c;然后用全连接层对特征进行处理。 AlexNet和VGG对LeNet的改进主要在于扩大和加深这两个模块。网络中的网络&#xff08;NiN&#xff09;则是在每个像素的通道上分别使用多层感知机。 import torch fr…

科技云报道:云安全的新战场上,如何打破“云威胁”的阴霾?

科技云报道原创。 近年来&#xff0c;在云计算和网络安全产业的蓬勃发展下&#xff0c;我国云安全行业市场规模呈现高速增长态势&#xff0c;在网络安全市场总体规模中占比不断上升。 据统计&#xff0c;近5年我国云安全市场保持高速增长&#xff0c;2021年我国云安全市场规模…

(25)(25.1) 光学流量传感器的测试和设置

文章目录 25.1.1 测试传感器 25.1.2 校准传感器 25.1.3 测距传感器检查 25.1.4 预解锁检查 25.1.5 首次飞行 25.1.6 第二次飞行 25.1.7 正常操作设置 25.1.8 视频示例&#xff08;Copter-3.4&#xff09; 25.1.9 空中校准 25.1.1 测试传感器 将传感器连接至自动驾驶仪…

【C语言】指针的进阶(四)—— 企业笔试题解析

笔试题1&#xff1a; int main() {int a[5] { 1, 2, 3, 4, 5 };int* ptr (int*)(&a 1);printf("%d,%d", *(a 1), *(ptr - 1));return 0; } 【答案】在x86环境下运行 【解析】 &a是取出整个数组的地址&#xff0c;&a就表示整个数组&#xff0c;因此…

Biome-BGC生态系统模型与Python融合技术

Biome-BGC是利用站点描述数据、气象数据和植被生理生态参数&#xff0c;模拟日尺度碳、水和氮通量的有效模型&#xff0c;其研究的空间尺度可以从点尺度扩展到陆地生态系统。 在Biome-BGC模型中&#xff0c;对于碳的生物量积累&#xff0c;采用光合酶促反应机理模型计算出每天…

使用Chatgpt编写的PHP数据库pdo操作类(增删改查)

摘要 将PDO封装成PHP类进行调用有很多好处&#xff0c;包括&#xff1a; 1、封装性和抽象性&#xff1a; 通过将PDO封装到一个类中&#xff0c;您可以将数据库操作逻辑与应用程序的其他部分分离开来&#xff0c;提高了代码的组织性和可维护性。这样&#xff0c;您只需在一个地…

soildwork2022怎么恢复软件界面的默认设置?

1.点击菜单中的” 视图” 2.在弹出的子菜单中选择”工作区” 3.选择工作区中的”默认” 4.点击默认后软件界面就恢复了默认设置。

FPGA 图像缩放 千兆网 UDP 网络视频传输,基于B50610 PHY实现,提供工程和QT上位机源码加技术支持

目录 1、前言版本更新说明免责声明 2、相关方案推荐UDP视频传输--无缩放FPGA图像缩放方案我这里已有的以太网方案 3、设计思路框架视频源选择IT6802解码芯片配置及采集动态彩条跨时钟FIFO图像缩放模块详解设计框图代码框图2种插值算法的整合与选择 UDP协议栈UDP视频数据组包UDP…

二叉树层序遍历及判断完全二叉树

个人主页:Lei宝啊 愿所有美好如期而遇 目录 二叉树层序遍历&#xff1a; 判断完全二叉树&#xff1a; 二叉树层序遍历&#xff1a; 层序遍历就是一层一层&#xff0c;从上到下遍历&#xff0c;上图遍历结果为&#xff1a;4 2 7 1 3 6 9 思路&#xff1a; 通过队列来实现层序…

发送实时音频数据到udp服务

由于浏览器不能直接连接udp服务&#xff0c;所以需要搭建一个websocket服务做中转&#xff0c;让websocket服务连接udp服务 1、vue开发获取实时音频数据并按4096分包后添加rtp协议头发送到websocket服务&#xff08;连接websocket自行编写连接到127.0.0.1:8889&#xff09; da…

购物H5商城架构运维之路

一、引言 公司属于旅游行业&#xff0c;需要将旅游&#xff0c;酒店&#xff0c;购物&#xff0c;聚合到线上商城。通过对会员数据进行聚合&#xff0c;形成大会员系统&#xff0c;从而提供统一的对客窗口。 二、业务场景 围绕更加有效地获取用户&#xff0c;提升用户的LTV&a…

Python线程和进程

1、深度解析Python线程和进程 一篇文章带你深度解析Python线程和进程 - 知乎使用Python中的线程模块&#xff0c;能够同时运行程序的不同部分&#xff0c;并简化设计。如果你已经入门Python&#xff0c;并且想用线程来提升程序运行速度的话&#xff0c;希望这篇教程会对你有所帮…

stm32之看门狗

STM32 有两个看门狗&#xff0c;独立看门狗和窗口看门狗&#xff0c;独立看门狗又称宠物狗&#xff0c;窗 口看门狗又称警犬。可用来检测和解决由软件错误引起的故障。两个看门狗的原理都是当计数器达到给定的超时值时&#xff0c;产生系统复位&#xff0c;对于窗口型看门狗同…

FL Studio21.2中文版数字音乐制作软件

现在的FL也可以像splice一样啦&#xff0c;需要什么样的声音只需在fl里搜索&#xff0c;就会自动展示给你! FL Studio 简称FL&#xff0c;全称&#xff1a;Fruity Loops Studio&#xff0c;国人习惯叫它"水果"。软件现有版本是 FL Studio 21&#xff0c;已全面升级支…

如何利用播放器节省20%点播成本

点播成本节省的点其实涉及诸多部分&#xff0c;例如&#xff1a;CDN、转码、存储等&#xff0c;而利用播放器降本却是很多客户比较陌生的部分。火山引擎基于内部支撑抖音集团相关业务的实践&#xff0c;播放器恰恰是成本优化中最重要和最为依赖的部分。 火山引擎的视频团队做了…

“智慧”北京,人工智能引领“新风尚”

原创 | 文 BFT机器人 北京时间&#xff0c;9月15日&#xff0c;北京人工智能产业峰会暨中关村科学城科创大赛颁奖典礼在北京中关村举行&#xff0c;同时惠阳还举行了“中关村人工智能大模型产业集聚区”启动建设的揭牌仪式。 此次大会围绕北京AI产业的建设与发展&#xff0c;各…

大模型时代,探人工智能发展的新动向

导语 | 今年以来大模型的热度居高不下&#xff0c;人工智能成为国内外各大厂商争相布局的新赛道。那么近期 AI 领域有哪些值得关注的新趋势&#xff0c;它又将为软件开发带来哪些影响呢&#xff1f;今天&#xff0c;我们特邀了微智云科技 CEO、腾讯云 TVP 张虎老师&#xff0c;…

不用addEventListener(‘resize‘, this.resize),用新的Web API ResizeObserver监听DIV元素尺寸的变化

响应式设计指的是根据屏幕视口尺寸的不同&#xff0c;对 Web 页面的布局、外观进行调整&#xff0c;以便更加有效地进行信息的展示。我们日常生活中接触的很多应用都遵循响应式的设计。 响应式设计如今也成为 web 应用的基本需求&#xff0c;而现在很多 web 应用都已经组件化&a…