OpenAI官方吴达恩《ChatGPT Prompt Engineering 提示词工程师》(4)推理/Inferring

推理/Inferring

推理是指模型将文本作为输入并执行某种分析的任务。这可以是提取标签、提取名称、理解文本的情感等任务。
例如,如果您想从一段文本中提取积极或消极的情感,在传统的机器学习工作流程中,您需要收集标签数据集、训练模型、确定如何在云中部署模型并进行推断。这需要经历大量的工作流程。而对于每个任务,例如情感、提取名称等,您都需要训练和部署单独的模型。
而在大型语言模型,对于类似的任务,只需要编写一个提示,就可以立即开始生成结果。而且,您可以只使用一个模型、一个API来执行许多不同的任务,而不需要找出如何训练和部署许多不同的模型。

环境准备

和(①指南)一样需要搭建一个环境

import openai
import osfrom dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env fileopenai.api_key  = os.getenv('OPENAI_API_KEY')
def get_completion(prompt, model="gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]response = openai.ChatCompletion.create(model=model,messages=messages,temperature=0, # this is the degree of randomness of the model's output)return response.choices[0].message["content"]

情感分析

以一个台灯的评价为例子。

lamp_review = """
Needed a nice lamp for my bedroom, and this one had \
additional storage and not too high of a price point. \
Got it fast.  The string to our lamp broke during the \
transit and the company happily sent over a new one. \
Came within a few days as well. It was easy to put \
together.  I had a missing part, so I contacted their \
support and they very quickly got me the missing piece! \
Lumina seems to me to be a great company that cares \
about their customers and products!!
"""

让我写一个提示来分类这个评价的情感。我只需要写下“以下产品评价的情感是什么”,然后加上通常的分隔符和评价文本等等。然后运行它。

prompt = f"""
What is the sentiment of the following product review, 
which is delimited with triple backticks?Review text: '''{lamp_review}'''
"""
response = get_completion(prompt)
print(response)
"""
The sentiment of the product review is positive.
"""

可以限定为只回答一个单词,积极或消极。

prompt = f"""
What is the sentiment of the following product review, 
which is delimited with triple backticks?Give your answer as a single word, either "positive" \
or "negative".Review text: '''{lamp_review}'''
"""
response = get_completion(prompt)
print(response)
"""
positive
"""

也可以让它识别出评价作者表达的情绪列表,包括不超过五个项目。

prompt = f"""
Identify a list of emotions that the writer of the \
following review is expressing. Include no more than \
five items in the list. Format your answer as a list of \
lower-case words separated by commas.Review text: '''{lamp_review}'''
"""
response = get_completion(prompt)
print(response)
"""
happy, satisfied, grateful, impressed, content
"""

我们也可以询问是否顾客有某一个特定的情感,比如愤怒?

prompt = f"""
Is the writer of the following review expressing anger?\
The review is delimited with triple backticks. \
Give your answer as either yes or no.Review text: '''{lamp_review}'''
"""
response = get_completion(prompt)
print(response)
"""
No
"""

信息提取

信息提取是NLP(自然语言处理)的一部分,从文本中提取您想要了解的特定信息。
在以下案例中,我要求它识别以下内容:商品Item和品牌Brand。

prompt = f"""
Identify the following items from the review text: 
Item purchased by reviewer
Company that made the itemThe review is delimited with triple backticks. \
Format your response as a JSON object with \
"Item" and "Brand" as the keys. 
If the information isn't present, use "unknown" \
as the value.
Make your response as short as possible.Review text: '''{lamp_review}'''
"""
response = get_completion(prompt)
print(response)
"""
{"Item": "lamp","Brand": "Lumina"
}
"""

多任务抽取,一次性提取这些不同的字段,下面例子编写提示来识别情绪,确定某人是否生气,然后提取物品和品牌。

prompt = f"""
Identify the following items from the review text: 
Sentiment (positive or negative)
Is the reviewer expressing anger? (true or false)
Item purchased by reviewer
Company that made the itemThe review is delimited with triple backticks. \
Format your response as a JSON object with \
"Sentiment", "Anger", "Item" and "Brand" as the keys.
If the information isn't present, use "unknown" \
as the value.
Make your response as short as possible.
Format the Anger value as a boolean.Review text: '''{lamp_review}'''
"""
response = get_completion(prompt)
print(response)
"""
{"Sentiment": "positive","Anger": false,"Item": "lamp with additional storage","Brand": "Lumina"
}
"""

推断主题

下面的例子,给定一篇长文,这是一篇虚构的关于政府工人对他们工作的机构感受的报纸文章。

story = """
In a recent survey conducted by the government, 
public sector employees were asked to rate their level 
of satisfaction with the department they work at. 
The results revealed that NASA was the most popular 
department with a satisfaction rating of 95%.One NASA employee, John Smith, commented on the findings, 
stating, "I'm not surprised that NASA came out on top. 
It's a great place to work with amazing people and 
incredible opportunities. I'm proud to be a part of 
such an innovative organization."The results were also welcomed by NASA's management team, 
with Director Tom Johnson stating, "We are thrilled to 
hear that our employees are satisfied with their work at NASA. 
We have a talented and dedicated team who work tirelessly 
to achieve our goals, and it's fantastic to see that their 
hard work is paying off."The survey also revealed that the 
Social Security Administration had the lowest satisfaction 
rating, with only 45% of employees indicating they were 
satisfied with their job. The government has pledged to 
address the concerns raised by employees in the survey and 
work towards improving job satisfaction across all departments.
"""

确定以下文本中正在讨论的五个主题。让我们把每个项目格式化成一个或两个单词长,将您的响应格式化为逗号分隔的列表,如果我们运行它,可以提取了一个主题列表。

prompt = f"""
Determine five topics that are being discussed in the \
following text, which is delimited by triple backticks.Make each item one or two words long. Format your response as a list of items separated by commas.Text sample: '''{story}'''
"""
response = get_completion(prompt)
print(response.split(sep=','))
"""
['government survey',' job satisfaction',' NASA',' Social Security Administration',' employee concerns']
"""

如果给一篇文章,可以判断是否有某一些主题,这是我们追踪的主题:NASA,当地政府,工程,员工满意度和联邦政府,为每个主题提供0或1的答案列表。

topie_list ={
"nasa", "local govement", "engineering",
"employee satisfaction", "federal government"
}
prompt = f"""
Determine whether each item in the following list of \
topics is a topic in the text below, which
is delimited with triple backticks.Give your answer as list with 0 or 1 for each topic.\List of topics: {", ".join(topic_list)}Text sample: '''{story}'''
"""
response = get_completion(prompt)
print(response)
"""
nasa: 1
local government: 0
engineering: 0
employee satisfaction: 1
federal government: 1
"""

如果某个主题包括NASA,可以打印出“新NASA故事”

topic_dict = {i.split(': ')[0]: int(i.split(': ')[1]) for i in response.split(sep='\n')}
if topic_dict['nasa'] == 1:print("ALERT: New NASA story!")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/85431.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于表单快速开发低代码技术平台的内容介绍

运用什么样的表单快速开发软件平台可以实现高效率创收?随着科技的进步和飞速发展,专业的低代码技术平台已经走入了很多企业的办公职场中,它们灵活、轻量级、优质、高效、易维护等优势特点,可以高效助力广大企业提质增效&#xff0…

位移贴图的实现原理

在以前的文章中介绍过GLTF编辑器 , 编辑器可以对模型的各种材质纹理进行编辑修改,但是有一些新手用户可能对这些材质纹理不太了解,所以我收集了一些资料对这些材质纹理做一下详细的介绍,今天这篇文章主要是介绍位移贴图。 1、什么…

stm32之智能垃圾桶实战

之前用过51做过一个垃圾桶的小项目,这里用32重新搞了一下。视频的效果和之前一样,可参考这个垃圾桶效果 。 一、项目描述(同51) 项目主要是模拟不用手动打开垃圾桶盖,而进行自动操作。自动打开的条件如下&#xff1a…

【二叉树魔法:链式结构与递归的纠缠】

本章重点 二叉树的链式存储二叉树链式结构的实现二叉树的遍历二叉树的节点个数以及高度二叉树的创建和销毁二叉树的优先遍历和广度优先遍历二叉树基础oj练习 1.二叉树的链式存储 二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑…

OpenAI官方吴达恩《ChatGPT Prompt Engineering 提示词工程师》(3)摘要

摘要/ Summarizing 如何使用大模型来概括文本 环境准备 和(①指南)一样需要搭建一个环境 导入OpenAI、加载API密钥以及这个getCompletion辅助函数 import openai import osfrom dotenv import load_dotenv, find_dotenv _ load_dotenv(find_dotenv(…

点云从入门到精通技术详解100篇-单期点云的高斯曲率定位桥梁潜在损伤技术研究

目录 前言 国内外研究现状 三维激光扫描对桥梁损伤检测的研究现状 基于点云高斯曲率损伤检测的研究现状 柱体偏差检测技术研究现状 存在的问题 法向量约束高斯曲率的 TLS 桥面潜在损伤区域探测 2.1 高斯曲率探伤的基本理论 2.2 点云拓扑关系建立的方法比较 2.2.1 KD-…

OpenCV项目开发实战--进行高动态范围 (HDR) 成像--附C++与Python的实现源码

在本教程中,我们将学习如何使用以不同曝光设置拍摄的多张图像创建高动态范围 (HDR) 图像。本文最后将共享 C++ 和 Python 代码供读者下载。 什么是高动态范围 (HDR) 成像? 大多数数码相机和显示器都以 24 位矩阵的形式捕获或显示彩色图像。每个颜色通道有 8 位,因此每个通…

社区分享|MeterSphere变身“啄木鸟”,助力云帐房落地接口自动化测试

云帐房网络科技有限公司(以下简称为“云帐房”)成立于2015年3月,以“成为最值得信赖的税务智能公司”为愿景,运用人工智能、大数据等互联网技术,结合深厚的财税行业服务经验,为代账公司和中大型企业提供智能…

【2023年中国研究生数学建模竞赛华为杯】E题 出血性脑卒中临床智能诊疗建模 问题分析、数学模型及代码实现

【2023年中国研究生数学建模竞赛华为杯】E题 出血性脑卒中临床智能诊疗建模 1 题目 1.1 背景介绍 出血性脑卒中指非外伤性脑实质内血管破裂引起的脑出血,占全部脑卒中发病率的10-15%。其病因复杂,通常因脑动脉瘤破裂、脑动脉异常等因素,导致…

力扣450 补9.15

450.删除二叉搜索树中的节点 可以做,就是去分类讨论,一开始以为有重复节点,感觉挺麻烦的,不过没有重复结点,感觉好做一点了,不过写结点指针赋值的时候把值赋反了,搞得一直报错,还是指…

Spring的RestTemplate、RPC和HTTP

https://blog.csdn.net/weixin_35674711/article/details/96112328 1 . 目标 理解RPC和HTTP的区别 能使用RestTemplate发送请求 2. 讲解 1 . RPC和HTTP 常见远程调用方式: RPC:(Remote Produce Call)远程过程调用 1.基于Socket 2.自定义数据格式 3.速度快&am…

黑马JVM总结(十九)

(1)GC调优1 通过官网查看查看JVM的参数: 可以使用java命令查看当前环境下的虚拟机参数: 学会使用一些工具如前面学的jmap ,jconsole等等工具 (2)GC调优2 垃圾回收调优只是众多调优中的一个方…

读高性能MySQL(第4版)笔记14_备份与恢复(中)

1. 在线备份 2. 离线备份 2.1. 关闭MySQL做备份是最简单、最安全的 2.2. 所有获取一致性副本的方法中最好的 2.3. 损坏或不一致的风险最小 2.4. 根本不用关心InnoDB缓冲池中的脏页或其他缓存 2.5. 不需要担心数据在尝试备份的过程中被修改 2.5.1. 服务器不对应用提供访问…

vuex的安装和使用

1、安装 注意应安装和Vue对应的版本。 vue2安装命令:npm i vuex3 vue3安装命令:npm i vuex4 2、创建vuex文件 store.js import Vue from vue import Vuex from vuexVue.use(Vuex)const state {count: 0 } const mutations {PLUSE(status, val){state.…

【动态规划刷题 17】回文子串 最长回文子串

647. 回文子串 链接: 647. 回文子串 给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子字符串 是字符串中的由连续字符组成的一个序列。 具有不同开始位置或结束位置的子串,即使是由…

Could not resolve dependencies for project

一 情况 拉了份代码,打包时, 出现了Could not resolve dependencies for project...... 二 解决 maven打完包运行,测试结果和本地不一致_犯错-总结-前进的博客-CSDN博客

Debian搭建smb服务器

1、确保Debian系统已经安装并处于最新状态。您可以使用以下命令更新系统: sudo apt update sudo apt upgrade2、安装Samba软件包。执行以下命令来安装Samba: sudo apt install samba3、编辑Samba配置文件。打开/etc/samba/smb.conf文件: s…

zookeeper + kafka

Zookeeper 概述 Zookeeper是一个开源的分布式服务管理框架。存储业务服务节点元数据及状态信息,并负责通知再 ZooKeeper 上注册的服务几点状态给客户端 Zookeeper 工作机制 Zookeeper从设计模式角度来理解: 是一个基于观察者模式设计的分布式服务管理框架&…

Learn Prompt-GPT-4:能力

GPT-4能力大赏​ 常识知识推理​ 一个猎人向南走了一英里,向东走了一英里,向北走了一英里,最后回到了起点。他看到了一只熊,于是开枪打了它。这只熊是什么颜色的? 答案是白色,因为这种情况只可能发生在北…

Gin学习记录4——Controller和中间件

一. Controller 用不同的Controller可以实现业务的分类,不同类型的请求可以共用同一套中间件 1.1 单文件Controller 几乎等同于函数封装,直接将ctrl的代码写入到一个文件里然后调用: package adminimport ("net/http""git…