DAY24 回溯算法part01 77. 组合 216.组合总和III 17.电话号码的字母组合

理论基础

#什么是回溯法

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

在二叉树系列中,我们已经不止一次,提到了回溯,例如二叉树:以为使用了递归,其实还隐藏着回溯 (opens new window)。

回溯是递归的副产品,只要有递归就会有回溯。

所以以下讲解中,回溯函数也就是递归函数,指的都是一个函数

#回溯法的效率

回溯法的性能如何呢,这里要和大家说清楚了,虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?

因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

此时大家应该好奇了,都什么问题,这么牛逼,只能暴力搜索。

#回溯法解决的问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

相信大家看着这些之后会发现,每个问题,都不简单!

另外,会有一些同学可能分不清什么是组合,什么是排列?

组合是不强调元素顺序的,排列是强调元素顺序

例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。

记住组合无序,排列有序,就可以了。

#如何理解回溯法

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

这块可能初学者还不太理解,后面的回溯算法解决的所有题目中,我都会强调这一点并画图举相应的例子,现在有一个印象就行。

#回溯法模板

这里给出Carl总结的回溯算法模板。

在讲二叉树的递归 (opens new window)中我们说了递归三部曲,这里我再给大家列出回溯三部曲。

  • 回溯函数模板返回值以及参数

在回溯算法中,我的习惯是函数起名字为backtracking,这个起名大家随意。

回溯算法中函数返回值一般为void。

再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。

但后面的回溯题目的讲解中,为了方便大家理解,我在一开始就帮大家把参数确定下来。

回溯函数伪代码如下:

void backtracking(参数)

  • 回溯函数终止条件

既然是树形结构,那么我们在讲解二叉树的递归 (opens new window)的时候,就知道遍历树形结构一定要有终止条件。

所以回溯也有要终止条件。

什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

所以回溯函数终止条件伪代码如下:

if (终止条件) {存放结果;return;
}

  • 回溯搜索的遍历过程

在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。

如图:

回溯算法理论基础

注意图中,我特意举例集合大小和孩子的数量是相等的!

#第77题. 组合

如果n为100,k为50呢,那就50层for循环,是不是开始窒息

此时就会发现虽然想暴力搜索,但是用for循环嵌套连暴力都写不出来!

咋整?

回溯搜索法来了,虽然回溯法也是暴力,但至少能写出来,不像for循环嵌套k层让人绝望。

那么回溯法怎么暴力搜呢?

上面我们说了要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题

递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了

此时递归的层数大家应该知道了,例如:n为100,k为50的情况下,就是递归50层。

一些同学本来对递归就懵,回溯法中递归还要嵌套for循环,可能就直接晕倒了!

如果脑洞模拟回溯搜索的过程,绝对可以让人窒息,所以需要抽象图形结构来进一步理解。

我们在关于回溯算法,你该了解这些! (opens new window)中说到回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了

那么我把组合问题抽象为如下树形结构:

77.组合

可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

在关于回溯算法,你该了解这些! (opens new window)中我们提到了回溯法三部曲,那么我们按照回溯法三部曲开始正式讲解代码了。

#回溯法三部曲

  • 递归函数的返回值以及参数

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。

代码如下:

vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果

其实不定义这两个全局变量也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以我定义全局变量了。

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。

为什么要有这个startIndex呢?

建议在77.组合视频讲解 (opens new window)中,07:36的时候开始听,startIndex 就是防止出现重复的组合

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。

77.组合2

所以需要startIndex来记录下一层递归,搜索的起始位置。

那么整体代码如下:

vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)

  • 回溯函数终止条件

什么时候到达所谓的叶子节点了呢?

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

如图红色部分:

77.组合3

此时用result二维数组,把path保存起来,并终止本层递归。

所以终止条件代码如下:

if (path.size() == k) {result.push_back(path);return;
}

  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

77.组合1

如此我们才遍历完图中的这棵树。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

代码如下:

for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历path.push_back(i); // 处理节点backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始path.pop_back(); // 回溯,撤销处理的节点
}

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

class Solution:def combine(self, n: int, k: int) -> List[List[int]]:result = []  # 存放结果集self.backtracking(n, k, 1, [], result)return resultdef backtracking(self, n, k, startIndex, path, result):if len(path) == k:result.append(path[:])returnfor i in range(startIndex, n + 1):  # 需要优化的地方path.append(i)  # 处理节点self.backtracking(n, k, i + 1, path, result)path.pop()  # 回溯,撤销处理的节点

 #216.组合总和III

思路

本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。

相对于77. 组合 (opens new window),无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。

想到这一点了,做过77. 组合 (opens new window)之后,本题是简单一些了。

本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。

例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。

选取过程如图:

216.组合总和III

图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。

#回溯三部曲

  • 确定递归函数参数

和77. 组合 (opens new window)一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。

这里我依然定义path 和 result为全局变量。

至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。

vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果

接下来还需要如下参数:

  • targetSum(int)目标和,也就是题目中的n。
  • k(int)就是题目中要求k个数的集合。
  • sum(int)为已经收集的元素的总和,也就是path里元素的总和。
  • startIndex(int)为下一层for循环搜索的起始位置。

所以代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)

其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。

还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。

  • 确定终止条件

什么时候终止呢?

在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。

所以如果path.size() 和 k相等了,就终止。

如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。

所以 终止代码如下:

if (path.size() == k) {if (sum == targetSum) result.push_back(path);return; // 如果path.size() == k 但sum != targetSum 直接返回
}

  • 单层搜索过程

本题和77. 组合 (opens new window)区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9

如图: 

216.组合总和III

处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。

class Solution:def combinationSum3(self, k: int, n: int) -> List[List[int]]:result = []  # 存放结果集self.backtracking(n, k, 0, 1, [], result)return resultdef backtracking(self, targetSum, k, currentSum, startIndex, path, result):if currentSum > targetSum:  # 剪枝操作return  # 如果path的长度等于k但currentSum不等于targetSum,则直接返回if len(path) == k:if currentSum == targetSum:result.append(path[:])returnfor i in range(startIndex, 9 - (k - len(path)) + 2):  # 剪枝currentSum += i  # 处理path.append(i)  # 处理self.backtracking(targetSum, k, currentSum, i + 1, path, result)  # 注意i+1调整startIndexcurrentSum -= i  # 回溯path.pop()  # 回溯

#17.电话号码的字母组合

回溯法来解决n个for循环的问题

对于回溯法还不了解的同学看这篇:关于回溯算法,你该了解这些!(opens new window)

例如:输入:"23",抽象为树形结构,如图所示:

17. 电话号码的字母组合

图中可以看出遍历的深度,就是输入"23"的长度,而叶子节点就是我们要收集的结果,输出["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]。

回溯三部曲:

  • 确定回溯函数参数

首先需要一个字符串s来收集叶子节点的结果,然后用一个字符串数组result保存起来,这两个变量我依然定义为全局。

再来看参数,参数指定是有题目中给的string digits,然后还要有一个参数就是int型的index。

注意这个index可不是 77.组合 (opens new window)和216.组合总和III (opens new window)中的startIndex了。

这个index是记录遍历第几个数字了,就是用来遍历digits的(题目中给出数字字符串),同时index也表示树的深度。

代码如下:

vector<string> result;
string s;
void backtracking(const string& digits, int index)
  • 确定终止条件

例如输入用例"23",两个数字,那么根节点往下递归两层就可以了,叶子节点就是要收集的结果集。

那么终止条件就是如果index 等于 输入的数字个数(digits.size)了(本来index就是用来遍历digits的)。

然后收集结果,结束本层递归。

代码如下:

if (index == digits.size()) {result.push_back(s);return;
}
  • 确定单层遍历逻辑

首先要取index指向的数字,并找到对应的字符集(手机键盘的字符集)。

然后for循环来处理这个字符集,代码如下:

int digit = digits[index] - '0';        // 将index指向的数字转为int
string letters = letterMap[digit];      // 取数字对应的字符集
for (int i = 0; i < letters.size(); i++) {s.push_back(letters[i]);            // 处理backtracking(digits, index + 1);    // 递归,注意index+1,一下层要处理下一个数字了s.pop_back();                       // 回溯
}

注意这里for循环,可不像是在回溯算法:求组合问题! (opens new window)和回溯算法:求组合总和! (opens new window)中从startIndex开始遍历的

因为本题每一个数字代表的是不同集合,也就是求不同集合之间的组合,而77. 组合 (opens new window)和216.组合总和III (opens new window)都是求同一个集合中的组合!

注意:输入1 * #按键等等异常情况

代码中最好考虑这些异常情况,但题目的测试数据中应该没有异常情况的数据,所以我就没有加了。

但是要知道会有这些异常,如果是现场面试中,一定要考虑到!

class Solution:def __init__(self):self.letterMap = ["",     # 0"",     # 1"abc",  # 2"def",  # 3"ghi",  # 4"jkl",  # 5"mno",  # 6"pqrs", # 7"tuv",  # 8"wxyz"  # 9]self.result = []self.s = ""def backtracking(self, digits, index):if index == len(digits):self.result.append(self.s)returndigit = int(digits[index])    # 将索引处的数字转换为整数letters = self.letterMap[digit]    # 获取对应的字符集for i in range(len(letters)):self.s += letters[i]    # 处理字符self.backtracking(digits, index + 1)    # 递归调用,注意索引加1,处理下一个数字self.s = self.s[:-1]    # 回溯,删除最后添加的字符def letterCombinations(self, digits):if len(digits) == 0:return self.resultself.backtracking(digits, 0)return self.result

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/853807.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【靶场搭建】-02- 搭建OWASP靶机

1.OWASP靶机介绍 相比较其他靶机&#xff0c;OWASP提供的环境更多&#xff0c;且包含了许多其他靶机的环境&#xff0c;属于性价比比较高的靶机了。 2.下载OWASP 访问以下地址进行下载&#xff1a; https://sourceforge.net/projects/owaspbwa/ 因为OWASP是虚拟机文件&…

函数(上)(C语言)

函数(上&#xff09; 一. 函数的概念二. 函数的使用1. 库函数和自定义函数(1) 库函数(2) 自定义函数的形式 2. 形参和实参3. return语句4. 数组做函数参数 一. 函数的概念 数学中我们其实就见过函数的概念&#xff0c;比如&#xff1a;一次函数ykxb&#xff0c;k和b都是常数&a…

跻身中国市场前三,联想服务器的“智变”与“质变”

IDC发布的《2024年第一季度中国x86服务器市场报告》显示&#xff0c;联想服务销售额同比增长200.2%&#xff0c;在前十厂商中同比增速第一&#xff0c;并跻身中国市场前三&#xff0c;迈入算力基础设施“第一阵营”。 十年砺剑联想梦&#xff0c;三甲登榜领风骚。探究联想服务器…

【机器学习】机器学习重要分支——强化学习:从理论到实践

文章目录 强化学习&#xff1a;从理论到实践引言第一章 强化学习的基本概念1.1 什么是强化学习1.2 强化学习的基本组成部分1.3 马尔可夫决策过程 第二章 强化学习的核心算法2.1 Q学习2.2 深度Q网络&#xff08;DQN&#xff09;2.3 策略梯度方法 第三章 强化学习的应用实例3.1 游…

【C语言】解决C语言报错:Format String Vulnerability

文章目录 简介什么是Format String VulnerabilityFormat String Vulnerability的常见原因如何检测和调试Format String Vulnerability解决Format String Vulnerability的最佳实践详细实例解析示例1&#xff1a;直接使用不受信任的输入作为格式化字符串示例2&#xff1a;未验证格…

1949年到2021年中国历年稻谷产量统计报告

数据介绍 数据来源于国家统计局&#xff0c;为1949年到2021年我国每年的稻谷产量数据。 2021年&#xff0c;我国稻谷产量为21284.24万吨&#xff0c;比上年增长0.5%。 数据统计单位为&#xff1a;万吨 我国稻谷产量有多少&#xff1f; 2021年&#xff0c;我国稻谷产量为2128…

springboot与flowable(12):网关服务(包容网关)

一、绘制流程图 包容网关可以看作是排他网关和并行网关的结合体。和排他网关一样&#xff0c;可以在外出顺序流上定义条件&#xff0c;包容网关会解析它们。但是主要的区别是包容网关可以选择多余一条顺序流&#xff0c;这和并行网关一样。包容网关的功能是基于进入和外出顺序流…

3d渲染的类型,渲染100邀请码1a12

3D渲染有不同的类型和方法&#xff0c;它们各有各的优缺点和适用场景&#xff0c;这里我们简单介绍下。 1、离线渲染 离线渲染也被称作预渲染&#xff0c;是指在不考虑时间限制的情况下&#xff0c;生成高质量二维图像或视频的方法。离线渲染通常用于电影、广告、设计等非交互…

回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测

回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测 目录 回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限…

ubuntu第三方库离线安装包(.deb离线安装方法;apt离线安装;离线安装deb)(docker离线安装、安装docker安装)

文章目录 方法1&#xff1a;Ubuntu Packages 网站下载离线包&#xff08;失败了&#xff0c;找不到包的可下载源&#xff0c;有的包有&#xff0c;有的包没有&#xff0c;不知道怎么回事&#xff09;操作步骤1. 在有网络的环境中&#xff0c;打开浏览器并访问 Ubuntu Packages …

使用kettle做的数据同步案例

1 mongo同步数据到mysql中 我想把51万8400的计算出来的八字信息&#xff0c;从mongo同步到mysql&#xff0c;看看在mysql中运行会怎么样。 选择mongodb input&#xff0c;这个是在Big Data中。 填写数据库和表 获取到mongodb的字段,获取到mongo的字段&#xff0c;如果某个字段…

已解决:Vector析构异常Opencv Assert _CrtIsValidHeapPointer

已解决&#xff1a;Vector析构异常Opencv Assert _CrtIsValidHeapPointer 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是博主英杰&#xff0c;211科班出身&#xff0c;就职于医疗科技公司&#xff0c;热衷分享知识&#xff0c;武汉…

手写MyBatis 重要基本原理框架

1. 手写MyBatis 重要基本原理框架 文章目录 1. 手写MyBatis 重要基本原理框架1.1 第一步&#xff1a;IDEA中创建模块1.2 第二步&#xff1a;资源工具类&#xff0c;方便获取指向配置文件的输入流1.3 第三步&#xff1a;定义SqlSessionFactoryBuilder类1.4 第四步&#xff1a;分…

记录一次root过程

设备: Redmi k40s 第一步&#xff0c; 解锁BL&#xff08;会重置手机系统&#xff01;&#xff01;&#xff01;所有数据都会没有&#xff01;&#xff01;&#xff01;&#xff09; 由于更新了澎湃OS系统, 解锁BL很麻烦, 需要社区5级以上还要答题。 但是&#xff0c;这个手机…

T113 Tina5.0 添加板级支持包

文章目录 环境介绍添加板级支持包修改板级文件验证总结 环境介绍 硬件&#xff1a;韦东山T113工业板 软件&#xff1a;全志Tina 5.0 添加板级支持包 进入源码目录<SDK>/device/config/chips/t113/configs&#xff0c;可以看到有如下文件夹&#xff1a; 复制一份evb1_…

React基础教程(07):条件渲染

1 条件渲染 使用条件渲染&#xff0c;结合TodoList案例&#xff0c;进行完善&#xff0c;实现以下功能&#xff1a; 当列表中的数据为空的时候&#xff0c;现实提示信息暂无待办事项当列表中存在数据的时候&#xff0c;提示信息消失 这里介绍三种实现方式。 注意这里的Empty是…

react-day1

1.react是什么呢&#xff1f; react是由Meta公司开发&#xff0c;是一个用于构建web和原生交互界面的库 2.react 项目修改文件保存后 &#xff0c;不能实时更新&#xff0c;需要&#xff1a; 在和package.json文件同目录的地方&#xff0c;新建.env文件&#xff1a;里面加入…

【vue】终端 常用代码 和其他注意

&#x1f951;这里目录 一、【安装】1. 搜版本2.卸载3.安装 带版本4. 纯安装&#xff08;自动最新&#xff09; 二、【官网】官网源码及用法讲解1.【npm】2.【printjs】打印 一、【安装】 以下全拿 qrcode.vue 举例 1. 搜版本 例子&#xff1a;搜 qrcode.vue的版本代码&…

SPI总线协议

目录 一、简介 二、接口 三、传输模式 ​四、数据交换 五、多从机配置 1、常规SPI模式 2、菊花链模式 一、简介 串行外设接口&#xff08;SPI&#xff09;是微控制器和外围IC&#xff08;如传感器、ADC、DAC、移位寄存器、SRAM等&#xff09;之间使用最广泛的接口之一。…

SpringBoot【2】集成 MyBatis Plus

SpringBoot 集成 MyBatis Plus 前言修改 pom.xml修改配置文件添加 实体类添加 持久层接口添加 持久层 XxxMapper.xml 文件添加 业务接口层添加 业务接口实现类添加 控制层添加 MyBatis 配置AutoFillMetaObjectHandlerMyBatisPlusConfig 验证 前言 由于 MySQL 备份/恢复测试&am…