前言
数据可视化是通过图形、图表、地图等可视元素将数据呈现出来,以便更容易理解、分析和解释。它是将抽象的数据转化为直观形象的过程,有助于发现数据中的模式、趋势和关系。数据可视化对于数据科学、商业分析、决策制定等领域都至关重要。当我们想用数据描述世界、阐释想法和展示成果时,如果只有单调的文本和数字,很难吸引观众的注意。漂亮的可视化图表有时能够在表达信息上胜过大量文字。
一、 plotly库
Plotly是一款交互式的数据可视化库,支持多种编程语言,包括Python、R、JavaScript等。它可以用于创建各种类型的图表,从简单的折线图和散点图到复杂的热力图和3D图。Plotly的图表具有动态性和交互性,使用户能够在图表中进行缩放、拖动、悬停等操作,以更深入地探索数据。
-
安装 Plotly: 在Python中,可以使用以下命令安装Plotly库:
pip install plotly
-
导入 Plotly: 在Python脚本或Jupyter Notebook中,导入Plotly库:
import plotly.graph_objects as go
-
创建图表对象: 使用
graph_objects
模块创建图表对象,例如:fig = go.Figure()
-
添加图表元素: 向图表对象添加不同类型的图表元素,如散点、线条、柱形等。
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6], mode='markers', name='Scatter'))
-
自定义图表: 设置图表的标题、坐标轴标签、布局等。
fig.update_layout(title='My Plotly Chart', xaxis_title='X-axis', yaxis_title='Y-axis')
-
显示图表: 在Jupyter Notebook中,可以使用以下命令显示图表:
fig.show()
Plotly还支持通过Dash创建交互式的Web应用程序,可以在数据可视化和用户界面方面提供更高级的功能。Dash是基于Plotly构建的开源框架,用于创建仪表板和数据分析应用。通过使用Plotly,可以轻松创建漂亮、交互式的图表,以更好地理解和传达数据。
二、示例
动画
在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly 动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:
代码如下:
import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,y="Entity",x="Deaths",animation_frame="Year",orientation='h',range_x=[0, df.Deaths.max()],color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,height=800,xaxis_showgrid=False,yaxis_showgrid=False,paper_bgcolor='rgba(0,0,0,0)',plot_bgcolor='rgba(0,0,0,0)',title_text='Evolution of Natural Disasters',showlegend=False)
fig.update_xaxes(title_text='Number of Deaths')
fig.update_yaxes(title_text='')
fig.show()
只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:
import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(df,x="gdpPercap",y="lifeExp",animation_frame="year",size="pop",color="continent",hover_name="country",log_x=True,size_max=55,range_x=[100, 100000],range_y=[25, 90],# color_continuous_scale=px.colors.sequential.Emrld
)
fig.update_layout(width=1000,height=800,xaxis_showgrid=False,yaxis_showgrid=False,paper_bgcolor='rgba(0,0,0,0)',plot_bgcolor='rgba(0,0,0,0)')
太阳图
太阳图(sunburst chart)是一种可视化 group by 语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。
假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重 group by 语句可以通过可视化来更有效地展示。
这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的 parents 参数)并分配对应的值即可,这在我们案例中即为 group by 语句的输出。
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],parents=["", "", "Female", "Female", 'Male', 'Male'],values=np.append(df.groupby('sex').tip.mean().values,df.groupby(['sex', 'time']).tip.mean().values),marker=dict(colors=px.colors.sequential.Emrld)),layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',plot_bgcolor='rgba(0,0,0,0)'))fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()
现在我们向这个层次结构再添加一层:
为此,我们再添加另一个涉及三个类别变量的 group by 语句的值。
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat','Sun', 'Thu', 'Fri ', 'Thu ', 'Fri ', 'Sat ', 'Sun ', 'Fri ', 'Thu '
],parents=["", "", "Female", "Female", 'Male', 'Male','Dinner', 'Dinner', 'Dinner', 'Dinner','Lunch', 'Lunch', 'Dinner ', 'Dinner ','Dinner ', 'Lunch ', 'Lunch '],values=np.append(np.append(df.groupby('sex').tip.mean().values,df.groupby(['sex','time']).tip.mean().values,),df.groupby(['sex', 'time','day']).tip.mean().values),marker=dict(colors=px.colors.sequential.Emrld)),layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),title_text='Tipping Habbits Per Gender, Time and Day')fig.show()
平行类别
另一种探索类别变量之间关系的方法是以下这种流程图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。
代码如下:
import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_categories(df,dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],color="Genre_id",color_continuous_scale=px.colors.sequential.Emrld,
)
fig.show()
平行坐标图
平行坐标图是上面的图表的连续版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。
代码如下:
import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_coordinates(df,dimensions=['IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min','US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'],color='IMDB_Rating',color_continuous_scale=px.colors.sequential.Emrld)
fig.show()
量表图和指示器
量表图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。
指示器在业务和咨询中非常有用。它们可以通过文字记号来补充视觉效果,吸引观众的注意力并展现你的增长指标。
import plotly.graph_objects as go
fig = go.Figure(go.Indicator(domain = {'x': [0, 1], 'y': [0, 1]},value = 4.3,mode = "gauge+number+delta",title = {'text': "Success Metric"},delta = {'reference': 3.9},gauge = {'bar': {'color': "lightgreen"},'axis': {'range': [None, 5]},'steps' : [{'range': [0, 2.5], 'color': "lightgray"},{'range': [2.5, 4], 'color': "