Linux文件系统【真的很详细】

目录

 一.认识磁盘

1.1磁盘的物理结构

1.2磁盘的存储结构

1.3磁盘的逻辑存储结构

二.理解文件系统 

2.1如何管理磁盘

2.2如何在磁盘中找到文件 

2.3关于文件名


哈喽,大家好。今天我们学习文件系统,我们之前在Linux基础IO中研究的是进程和被打开文件之间的关系,以及如何管理被打开的文件。那么,在磁盘中没有被打开的文件应该怎样管理呢?今天,我们一块研究一下。我们开始啦!

 一.认识磁盘

磁盘作为硬件中的唯一一个机械结构,在计算机系统中的地位不言而喻,所以,我们有必要好好了解一下我们的磁盘。

1.1磁盘的物理结构

  • 随着计算机的更新换代,我们现在的笔记本上很少见到磁盘了。取自换代的是固态硬盘(ssd)。所以固态硬盘也要相对贵一些。磁盘作为一个机械结构,并且是外设,这就决定了访问磁盘的速度是很慢的(相对于CPU或者内存)。
  • 在企业中,磁盘依旧是存储的主流。因为:1.固态硬盘比较贵,磁盘相对来说比较便宜。2.磁盘的存储容量比较大,适合海量数据的存储。3.ssd有一个巨大的缺点:ssd如果传输次数过多,就会出现被击穿的情况,造成数据丢失;在企业中,高并发的情况非常常见,所以极其不适合在企业中使用。

磁盘是由很多盘片叠加在一起的。 一个盘片有两个盘面,每个盘面都可以读取数据,每个盘面都有磁头,盘片数=磁头数=盘面数*2

1.2磁盘的存储结构

在宏观的世界里,看起来盘面很光滑,但是在显微镜下,盘面是很粗糙的。

下面,先给大家介绍几个概念

  • 在一个盘面中,以中间的马达为圆心,会存在很多的同心圆,这些同心圆叫做磁道。磁头在旋转的过程就是确认在哪一个磁道的过程。
  • 磁盘中每一个磁道被等分为若干个相同的弧段,这些弧段便是磁盘的扇区,扇区是磁盘寻址的最小的单位。扇区的大小都是512字节。虽然距离圆心越远,扇区的长度越大,但是,我们可以使用存储的密度加以控制。使其存储的数据量相同,便于管理。盘片在旋转的过程就是确认在哪一个扇区的过程。
  • 为了方便管理,我们可以对不同的磁道进行编号,然后在同一磁道下对不同扇区再进行编号。

每个盘面对应一个磁头。所有的磁头都是连在同一个磁臂上的,因此所有磁头只能“共进退”。

所有盘面中相对位置相同的磁道组成柱面。如上图,柱面的存在使得更为方便的找到每一块扇区。

如何在多块磁片中,定位到一块扇区呢?

 先定位在哪一个磁盘(cylinder),也就是柱面(Track),再定位在哪一个盘面(head),最后定位扇区(sector)。我们可以定位任何一个扇区,也就可以定位任意多个扇区。

 磁盘中定义一个扇区,采用硬件的方式:CHS定位法。

1.3磁盘的逻辑存储结构

大家有没有见过磁带:

等待一盘磁带不用了,我们总是把里面黑色的磁带给扯出来,然后玩!磁带卷起来是圆形的(也是由很多同心圆构成的),扯出来是线性的。我们再看我们的磁盘,怎么和磁带这么相似呢?我们可以把整个磁盘全部抽象给一个线性结构。

磁盘物理上是一种圆形结构,我们可以想象成线性结构!如图:假设一块磁盘由2块盘片组成,所以就有4个盘面,一个盘面由7条磁盘构成,一个磁道又分成了8个沙区

就这样,我们把磁盘从逻辑上看做一个sector arr[4*7*8]的数组,所以由原来的对磁盘的管理变成了对数组的管理,这不就是我们常提到的先描述,再组织嘛!!

现在,这该死的磁盘已经被我们给想象成了一个数组,要找到一个扇区,该怎么找呢? 

只要知道这个扇区的下标,就算定位了一个扇区。在操作系统内部,我们称这个下标为LBA地址(逻辑块地址)。


现在有一块磁盘,相关数据如下:问:LBA地址为123的扇区位置?

为什么OS要对存储结构做逻辑抽象呢?直接用CHS不可以吗?

  • 便于管理。
  • 不想让代码和硬件强耦合。 

虽然磁盘访问的最小单位是512字节,但是依旧很小!OS内的文件系统定制的进行多个扇区的读取(一次读取4KB的数据)哪怕只想读取一个比特位,必须将4KBload到内存,进行读取或者读取。如果有必要再写回磁盘。这是一种以空间换时间的方式。

但这样,有时会显得非常浪费,比如我要读取的数据只有几个字节的大小,OS也要给我们一次性的读取4KB的数据。但这背后有一个原理叫做:局部性原理:从理论上证明了计算机要访问一段数据时,这段数据周围的数据也有较大的可能性被访问到。所以,真实的内存是以4KB为单位被操作系统读取的。磁盘中的文件(尤其是可执行文件),按4KB大小划分好的区域。

二.理解文件系统 

2.1如何管理磁盘

假设一个磁盘为500GB。操作系统说:“卧槽,这么大,怎么管呀?”。 虽然难管,但是这点问题难不住我们的工程师。他们将整个磁盘分区,每个区分出100GB甚至更小的空间,然后对每个区进行分组,每组分出5GB的空间,就这样分下去,直到方便管理为止。虽然5GB的空间很小了,但是对于500GB来说这就是小巫见大巫。这种思想叫做分治思想。一个5GB的空间管理好了,然后对刮管理方法进行复制,不就管理好整个磁盘了嘛 !。

就像我们同学在学校一样:一位同学,必定属于哪一个宿舍,这件宿舍必定属于哪一个班级,这个班级必定是属于哪一个专业,这个专业必定是属于哪一个学院,这个学院一定属于学校。这不就是在利用分治思想来进行管理嘛!

 

 

文件=内容+属性,Linux下的内容和属性是分批存储的,但是一个未打开的文件的内容和属性信息都存储在哪里呢?

  • 文件属性存储在Inode中,Inode是固定大小,一个人文件,一个Inode。一个文件的所有属性几乎都存储在Inode中,但是文件名并不存储在Inode中。
  • 文件的内容存储在data  block数据块中,数据块随着应用类型的变化,大小也会发生变化。

关于Inode属性集合

  • 由于每个文件都有Inode,为了区分彼此,每个Inode都有自己的编号。编号是以组为单位进行编的。

那么,在Linux下,如何查看文件的inode编号呢?

 

 inode table:

保存分组内部所有可用的(已经使用+没有使用)的inode。

Data blocks:

 保存分组内部所有可用的(已经使用+没有使用)的数据快。

如果我们要创建一个文件,怎么办?

  1. 查找没有使用的Inode,然后把属性写入Inode中。
  2. 查找没有使用的数据块,然后把内容写入数据块。

所以,我们创建文件的过程,离不开查找。如何查找呢?

 Inode Bitmap:

Inode对应的位图结构。假设inode一共有n个,位图结构中的比特位的个数至少也为n个。

位图中比特位的位置与当前文件的对应的ID是一一对应的,比特位的1和0表示是否被占用。 

block Bitmap:

数据块对应的位图结构。位图中比特位的位置和当前data block对应的数据块的位置是一一对应的。 

 如果要知道inode一共有多少个,没有使用的是多少个,如果通过计算获取结果,效率太低了,这时Group Descriptor Table出现了。

Group Descriptor Table:

包含对应分组的宏观属性信息,包括:一共有多少个数据块,使用了多少;一共有多少个Inode,使用了多少等等。 

Super Block
超级块(Super Block):存放文件系统本身的结构信息。
  记录的信息主要有:bolck 和 inode 的总量,未使用的block和inode的数量,一个block和inode的大小,最近一次挂载的时间,最近一次写入数据的时间,最近一次检验磁盘的时间等其他文件系统的相关信息。Super Block的信息被破坏,可以说整个文件系统结构就被破坏了。

  并且超级块通常在分组内多个组有一个超级块,在系统中是有一定比例的,假设我一个100G的分区有1000个分组,每20个分组就有一个super block,那么总共就有50个超级块。为什么需要这些超级块呢?本质上还是为了数据备份,如果某个块组或者inode丢失,那么就 可以通过super block来进行恢复。

2.2如何在磁盘中找到文件 

 查找一个文件,要通过Inode编号。

  • 通过inode bitmap 查找对应的比特位的位置是1还是0
  • 如果这个编号被占用,在inode Table找到这个Inode,然后确定一下是否是我们要查找的文件。

但是,如果我要得到这个文件的内容呢?

inode在内核中的结构如下:

struct inode {umode_t         i_mode;//文件的访问权限(eg:rwxrwxrwx)unsigned short      i_opflags;kuid_t          i_uid;//inode拥有者idkgid_t          i_gid;//inode拥有者组idunsigned int        i_flags;//inode标志,可以是S_SYNC,S_NOATIME,S_DIRSYNC等#ifdef CONFIG_FS_POSIX_ACLstruct posix_acl    *i_acl;struct posix_acl    *i_default_acl;
#endifconst struct inode_operations   *i_op;//inode操作struct super_block  *i_sb;//所属的超级快/*address_space并不代表某个地址空间,而是用于描述页高速缓存中的页面的一个文件对应一个address_space,一个address_space与一个偏移量能够确定一个一个也高速缓存中的页面。i_mapping通常指向i_data,不过两者是有区别的,i_mapping表示应该向谁请求页面,i_data表示被改inode读写的页面。*/struct address_space    *i_mapping;#ifdef CONFIG_SECURITYvoid            *i_security;
#endif/* Stat data, not accessed from path walking */unsigned long       i_ino;//inode号/** Filesystems may only read i_nlink directly.  They shall use the* following functions for modification:**    (set|clear|inc|drop)_nlink*    inode_(inc|dec)_link_count*/union {const unsigned int i_nlink;//硬链接个数unsigned int __i_nlink;};dev_t           i_rdev;//如果inode代表设备,i_rdev表示该设备的设备号loff_t          i_size;//文件大小struct timespec     i_atime;//最近一次访问文件的时间struct timespec     i_mtime;//最近一次修改文件的时间struct timespec     i_ctime;//最近一次修改inode的时间spinlock_t      i_lock; /* i_blocks, i_bytes, maybe i_size */unsigned short          i_bytes;//文件中位于最后一个块的字节数unsigned int        i_blkbits;//以bit为单位的块的大小blkcnt_t        i_blocks;//文件使用块的数目#ifdef __NEED_I_SIZE_ORDEREDseqcount_t      i_size_seqcount;//对i_size进行串行计数
#endif/* Misc */unsigned long       i_state;//inode状态,可以是I_NEW,I_LOCK,I_FREEING等struct mutex        i_mutex;//保护inode的互斥锁//inode第一次为脏的时间 以jiffies为单位unsigned long       dirtied_when;   /* jiffies of first dirtying */struct hlist_node   i_hash;//散列表struct list_head    i_wb_list;  /* backing dev IO list */struct list_head    i_lru;      /* inode LRU list */struct list_head    i_sb_list;//超级块链表union {struct hlist_head   i_dentry;//所有引用该inode的目录项形成的链表struct rcu_head     i_rcu;};u64         i_version;//版本号 inode每次修改后递增atomic_t        i_count;//引用计数atomic_t        i_dio_count;atomic_t        i_writecount;//记录有多少个进程以可写的方式打开此文件const struct file_operations    *i_fop; /* former ->i_op->default_file_ops */struct file_lock    *i_flock;//文件锁链表struct address_space    i_data;
#ifdef CONFIG_QUOTAstruct dquot        *i_dquot[MAXQUOTAS];//inode磁盘限额
#endif/*公用同一个驱动的设备形成链表,比如字符设备,在open时,会根据i_rdev字段查找相应的驱动程序,并使i_cdev字段指向找到的cdev,然后inode添加到struct cdev中的list字段形成的链表中*/struct list_head    i_devices;,union {struct pipe_inode_info  *i_pipe;//如果文件是一个管道则使用i_pipestruct block_device *i_bdev;//如果文件是一个块设备则使用i_bdevstruct cdev     *i_cdev;//如果文件是一个字符设备这使用i_cdev};__u32           i_generation;#ifdef CONFIG_FSNOTIFY//目录通知事件掩码__u32           i_fsnotify_mask; /* all events this inode cares about */struct hlist_head   i_fsnotify_marks;
#endif#ifdef CONFIG_IMAatomic_t        i_readcount; /* struct files open RO */
#endif//存储文件系统或者设备的私有信息void            *i_private; /* fs or device private pointer */
};

其中,有一个关于数组块的数组,data block block[15]。

 

这个数组元素的个数是固定的。但并表示这个文件可以写入的数据量是一定的。如图:每一个数据块都有自己的编号,这个数组中存放的就是该文件所使用的数据块的编号,通过这个数组就可以实现我们查找内容的行为。虽然只有15元素,但并不代表我们仅可以使用15个数据块。从下表为12的元素开始,所指向的数据块里边保存的是其他数据块的编号,下一级数据块中的内容可以使下下一级数据块的编号。如此,就可以增加我们可使用数据块的个数。为了便于大家理解,做如下图:

所以,我们就顺利完成了文件的查找工作,那么,如何删除一个文件呢? 

删除文件就太简单了,只需要找到这个文件,然后将这个文件的Inode编号对应的比特位由1置为0就可以了。然后将block bitmap由1置为0就可以了。(惰性删除)

这里并没有直接删除数据块,所以Linux下删除是可以恢复的。

2.3关于文件名

这是什么鬼?我们不是说可以根据inode编号查找文件嘛,这里为什么不可以使用编号查找呀 ?

我们说:Linux下一切皆是文件。其实,目录本身就是一个文件,文件的属性容易理解,但是,文件的内容是什么呢?

目录文件的内容就是编号和文件名之间的映射关系,所以,我们之前提到再inode中不需要存储文件名。记录文件名是目录的事情。

 写到最后,因水平有限,文中难免会出现错误,请各位大佬指正!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/853261.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【DevOps】 什么是容器 - 一种全新的软件部署方式

目录 引言 一、什么是容器 二、容器的工作原理 三、容器的主要特性 四、容器技术带来的变革 五、容器技术的主要应用场景 六、容器技术的主要挑战 七、容器技术的发展趋势 引言 在过去的几十年里,软件行业经历了飞速的发展。从最初的大型机时代,到后来的个人电脑时代,…

【Mongodb-01】Mongodb亿级数据性能测试和压测

mongodb数据性能测试 一,mongodb数据性能测试1,mongodb数据库创建和索引设置2,线程池批量方式插入数据3,一千万数据性能测试4,两千万数据性能测试5,五千万数据性能测试6,一亿条数据性能测试7&am…

MySQL-----InnoDB的自适应哈希索引

InnoDB存储引擎监测到同样的二级索引不断被使用,那么它会根据这个二级索引,在内存上根据二级索引树(B树)上的二级索引值,在内存上构建一个哈希索引,来加速搜索。 查看是否开启自适应哈希索引 show variables like innodb_adapti…

JavaScript常见面试题(一)

文章目录 1. JavaScript有哪些数据类型,它们的区别?2.数据类型检测的方式有哪些3. 判断数组的方式有哪些4.null和undefined区别5.typeof null 的结果是什么,为什么?6.intanceof 操作符的实现原理及实现7.为什么0.10.2 ! 0.3&…

Fluent固体运动的设置方法(1)

1 概述 固体运动是某些CFD问题中必须要考虑的因素,如风扇的旋转。相关问题可分类如下: 问题类型是否为刚体运动规律是否已知无特定称呼YY六自由度运动问题YN流固耦合问题NN 在 Fluent 中,有多种方法表征固体运动,包括&#xff1…

【医学图像处理】从ADNI中下载样本的MMSE数据

MMSE是什么? 简易精神状态检查(MMSE,Mini-Mental State Examination)是一种广泛使用的认知功能评估工具。它通常用于临床和研究环境中筛查痴呆症及评估其严重程度。MMSE通过考察患者的多种认知功能来进行评估,包括算术…

深度学习(八)——神经网络:卷积层

一、卷积层Convolution Layers函数简介 官网网址:torch.nn.functional — PyTorch 2.0 documentation 由于是图像处理,所以主要介绍Conv2d。 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride1, padding0, dilation1, groups1, b…

C++初学者指南第一步---3.输入和输出(基础)

C初学者指南第一步—3.输入和输出&#xff08;基础&#xff09; 1. I/O Streams(I/O流) #include <iostream>int main () {int i;// read value into istd::cin >> i; // print value of istd::cout << i << \n; }数据的来源和目标 …

解决MyBatis获取刚插入数据的ID值

解决MyBatis获取刚插入数据的ID值 Mybatis获取刚插入数据的ID值有很多解决方法&#xff0c;目前采用以下方式进行获取。 添加完数据后直接返回刚添加数据的id // UserDao.java public static void addUser() throws Exception{InputStream resourceAsStream Resources.getR…

绝了!篇篇10万+的AI治愈系插画,完整版项目拆解(附提示词)!

大家好&#xff0c;我是向阳 最近&#xff0c;治愈系插画在小某薯上热度很高&#xff0c;比如这个号&#xff0c;每一篇的笔记数据都不错&#xff0c;2个月时间涨粉7.3万。 然后&#xff0c;我偶然发现&#xff0c;有人把这样的治愈插画用到公某号爆文的配图上&#xff0c;每一…

Passper for ZIP 安装教程 (ZIP密码恢复软件)

前言 Passper for ZIP是一款功能强大且实用的ZIP密码恢复软件。当你忘记了压缩包的密码时&#xff0c;这个工具可以轻松解决这个问题。只需按照界面上的提示操作&#xff0c;选择文件&#xff0c;然后选择解码的方式&#xff0c;即可轻松等待恢复完成。该软件支持四种密码恢复…

软考初级网络管理员__Web网站的建立、管理维护以及网页制作单选题

1.在HTML 中&#xff0c;用于输出“>”符号应使用()。 gt \gt > %gt 2.浏览器本质上是一个&#xff08;&#xff09;。 连入Internet的TCP/IP程序 连入Internet的SNMP程序 浏览Web页面的服务器程序 浏览Web页面的客户程序 3.HTML 语言中&#xff0c;单选按钮的…

ollama 多模态llava图像识别理解模型使用

参考: https://llava-vl.github.io/ https://ollama.com/blog/vision-models https://blog.csdn.net/weixin_42357472/article/details/137666022 下载: ollama run llava:13bcli使用 图片地址前面空格就行 describe this image: /ai/a1.jpg

笔记本电脑安装属于自己的Llama 3 8B大模型和对话客户端

选择 Llama 3 模型版本&#xff08;8B&#xff0c;80 亿参数&#xff09; 特别注意&#xff1a; Meta 虽然开源了 Llama 3 大模型&#xff0c;但是每个版本都有 Meta 的许可协议&#xff0c;建议大家在接受使用这些模型所需的条款之前仔细阅读。 Llama 3 模型版本有几个&…

在矩池云使用GLM-4的详细指南(无感连GitHubHuggingFace)

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本&#xff0c;在多项测试中表现出超越已有同等规模开源模型的性能&#xff0c;它能兼顾多轮对话、网页浏览、代码执行、多语言、长文本推理等多种功能&#xff0c;性能更加强大。其多模态语言模型GLM-4V-9B在…

socket收发数据的处理

1. TCP 协议是一种基于数据流的协议 Socket的Receive方法只是把接收缓冲区的数据提取出来,当系统的接收缓冲区为空,Receive方法会被阻塞,直到里面有数据。 Socket的Send方法只是把数据写入到发送缓冲区里,具体的发送过程由操作系统负责。当操作系统的发送缓冲区满了,Send方法会…

《TCP/IP网络编程》(第十五章)套接字和标准I/O

之前数据通信时&#xff0c;使用的是read&write函数以及其他各种I/O函数&#xff0c;本章将使用标准I/O函数&#xff0c;例如C语言的fopen、fgetc、fputs等等&#xff1b;C语言的cout、cin等等 1.使用标准I/O函数的优点 ①跨平台兼容性&#xff1a; 标准I/O函数通常是跨平…

大数据实训项目(小麦种子)-04、大数据实训项目JavaWeb环境搭建

文章目录 前言运行前准备工作1、安装Hadoop3.1.0配置winutils原因描述配置方式注意点&#xff08;hadoop.dll拷贝System32目录下&#xff09; 2、hive运行报错&#xff08;The dir: /tmp/hive on HDFS should be writable. &#xff09; 项目环境搭建参考资料 前言 博主介绍&a…

【LLM之RAG】RAFT论文阅读笔记

研究背景 论文针对的主要问题是如何将预训练的大型语言模型&#xff08;LLMs&#xff09;适应特定领域的检索增强生成&#xff08;RAG&#xff09;。这些模型通常在广泛的文本数据上进行预训练&#xff0c;已经表现出在广义知识推理任务上的优越性能。然而&#xff0c;在特定领…

Google Earth Engine(GEE)——在控制台上答应出一个button按钮

函数: ui.Button(label, onClick, disabled, style) A clickable button with a text label. Arguments: label (String, optional): The buttons label. Defaults to an empty string. onClick (Function, optional): A callback fired when the button is clicked. T…