深度学习(八)——神经网络:卷积层

一、卷积层Convolution Layers函数简介

官网网址:torch.nn.functional — PyTorch 2.0 documentation

由于是图像处理,所以主要介绍Conv2d。

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
  • 参数解释可见上一篇笔记

  • in_channels(int): 输入图像的通道数,彩色图像一般为3(RGB三通道)

  • out_channel(int): 通过卷积后,产生的输出的通道数

  • kernel_size(int or tuple): 一个数或者元组,定义卷积大小。如_kernel_size=3_,即定义了一个大小为_3×3_的卷积核;kernel_size=(1,2),即定义了一个大小为_1×2_的卷积核。

  • stride(int or tuple,可选): 默认为1,卷积核横向、纵向的步幅大小

  • padding(int or tuple,可选): 默认为0,对图像边缘进行填充的范围

  • padding_mode(string,可选): 默认为zeros,对图像周围进行padding时,采取什么样的填充方式。可选参数有:'zeros', 'reflect', 'replicate' or 'circular'

  • dilation(int or tuple,可选): 默认为1,定义在卷积过程中,它的核之间的距离。这个我们称之为空洞卷积,但不常用。

  • groups(int or tuple,可选): 默认为1。分组卷积,一般都设置为1,很少有改动

  • bias(bool,可选): 默认为True。偏置,常年设置为True。代表卷积后的结果是否加减一个常数。

关于卷积操作,官方文档的解释如下:

In the simplest case, the output value of the layer with input size \((N,C_{in}​,H,W) \)and output\( (N,C_{out}​,H_{out}​,W_{out}​)\) can be precisely described as:

\[out(N_i​,Cou_{tj}​​)=bias(C_{out_j}​​)+∑_{k=0}^{C_{in}​−1}​weight(C_{out_j}​​,k)⋆input(N_i​,k) \]

where ⋆ is the valid 2D cross-correlation operator, \(N\) is a batch size, \(C \)denotes a number of channels, \(H\) is a height of input planes in pixels, and \(W\) is width in pixels.

(1)参数kernel_size的说明

  • kernel_size主要是用来设置卷积核大小尺寸的,给定模型一个kernel_size,模型就可以据此生成相应尺寸的卷积核。

  • 卷积核中的参数从图像数据分布中采样计算得到的。

  • 卷积核中的参数会通过训练不断进行调整。

(2)参数out_channel的说明

  • 如果输入图像in_channel=1,并且只有一个卷积核,那么对于卷积后产生的输出,其out_channel也为1
  • 如果输入图像in_channel=2,此时有两个卷积核,那么在卷积后将会输出两个矩阵,把这两个矩阵当作一个输出,此时out_channel=2

二、实例讲解

使用CIFAR中的图像数据,对Conv2d进行讲解

import torch
from  torch import nn
import torchvision
from torch.utils.data import DataLoader
from torch.nn import Conv2d
from torch.utils.tensorboard import SummaryWriter#导入图像数据
dataset=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
#打包数据
dataloder=DataLoader(dataset,batch_size=64)#搭建神经网络
class Demo(nn.Module):def __init__(self):super().__init__()#导入图像为彩色,所以in_chennel=3;输出我们可以试试out_chennel=6;kernel_size=3(进行3×3的卷积),stride和padding均使用默认值1和0self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)    #self.conv1为一个卷积层,Conv2d是建立卷积层的函数def forward(self,x):x = self.conv1(x)  #将输入的x放进卷积层self.conv1中,然后返回得到的值(即输出的x)return xdemo=Demo()
print(demo)
"""
[Run]
Demo((conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
)[解读]
就是Demo中有一个卷积层conv1,输入3通道图像,输出6通道图像。卷积核大小为3×3,步幅为1×1
"""#将每张图像放入神经网络中,并查看大小
for data in dataloder:imgs,targets=data  #获取打包好的图像output=demo(imgs)  #将图像数据放入神经网络中,经过forward函数进行卷积操作print(imgs.shape) #举例其中一个结果:[Run] torch.Size([64, 3, 30, 30]),即第10行中batch_size=64,in_channel为6通道,32×32print(output.shape)  #举例其中一个结果:[Run] torch.Size([64, 6, 30, 30]),即第10行中batch_size=64,out_channel为6通道,卷积操作后尺寸变为30×30#更直观地对处理前后图像进行可视化
writer=SummaryWriter("nn_logs")step=0
for data in dataloder:imgs,targets=dataoutput=demo(imgs)#torch.Size([64, 3, 32, 32])writer.add_images("input",imgs,step)#torch.Size([64, 6, 30, 30])#由于通道数为6,add_images不知道如何显示,所以用一个不太严谨的方法,reshape一下图像,变为[xxx,3,30,30],多余的像素放在batch_size里面output=torch.reshape(output,(-1,3,20,30))  #由于第一个值不知道是多少,所以写-1,它会根据后面的值去计算writer.add_images("output",output,step)step+=1
  • 结果中图像的尺寸变小,如果要使图像尺寸不变,可以考虑用padding进行填充

需要注意的是,要完全在网页上显示图像,打开路径时代码要变成:

tensorboard --logdir=路径 --samples_per_plugin=images=1000

三、图像输入输出尺寸转化计算公式

参数说明:

  • \(N:\) 图像的batch_size

  • \(C:\) 图像的通道数

  • \(H:\) 图像的高

  • \(W:\) 图像的宽

计算过程:

  • Input: \((N,C_{in}​,H_{in}​,W_{in}​) or (C_{in}​,H_{in}​,W_{in}​)\)

  • Output: \((N,C_{out}​,H_{out}​,W_{out}​) or (C_{out}​,H_{out}​,W_{out}​)\)

    • 其中有:

      \(H_{out}​=⌊\frac{H_{in}​+2×padding[0]−dilation[0]×(kernel\_size[0]−1)−1​}{stride[0]}+1⌋\)

      \(W_{out}​=⌊\frac{W_{in}​+2×padding[1]−dilation[1]×(kernel\_size[1]−1)−1​}{stride[1]}+1⌋\)

看论文的时候,有些比如像padding这样的参数不知道,就可以用这条公式去进行推导

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/853243.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++初学者指南第一步---3.输入和输出(基础)

C初学者指南第一步—3.输入和输出&#xff08;基础&#xff09; 1. I/O Streams(I/O流) #include <iostream>int main () {int i;// read value into istd::cin >> i; // print value of istd::cout << i << \n; }数据的来源和目标 …

解决MyBatis获取刚插入数据的ID值

解决MyBatis获取刚插入数据的ID值 Mybatis获取刚插入数据的ID值有很多解决方法&#xff0c;目前采用以下方式进行获取。 添加完数据后直接返回刚添加数据的id // UserDao.java public static void addUser() throws Exception{InputStream resourceAsStream Resources.getR…

绝了!篇篇10万+的AI治愈系插画,完整版项目拆解(附提示词)!

大家好&#xff0c;我是向阳 最近&#xff0c;治愈系插画在小某薯上热度很高&#xff0c;比如这个号&#xff0c;每一篇的笔记数据都不错&#xff0c;2个月时间涨粉7.3万。 然后&#xff0c;我偶然发现&#xff0c;有人把这样的治愈插画用到公某号爆文的配图上&#xff0c;每一…

Passper for ZIP 安装教程 (ZIP密码恢复软件)

前言 Passper for ZIP是一款功能强大且实用的ZIP密码恢复软件。当你忘记了压缩包的密码时&#xff0c;这个工具可以轻松解决这个问题。只需按照界面上的提示操作&#xff0c;选择文件&#xff0c;然后选择解码的方式&#xff0c;即可轻松等待恢复完成。该软件支持四种密码恢复…

软考初级网络管理员__Web网站的建立、管理维护以及网页制作单选题

1.在HTML 中&#xff0c;用于输出“>”符号应使用()。 gt \gt > %gt 2.浏览器本质上是一个&#xff08;&#xff09;。 连入Internet的TCP/IP程序 连入Internet的SNMP程序 浏览Web页面的服务器程序 浏览Web页面的客户程序 3.HTML 语言中&#xff0c;单选按钮的…

ollama 多模态llava图像识别理解模型使用

参考: https://llava-vl.github.io/ https://ollama.com/blog/vision-models https://blog.csdn.net/weixin_42357472/article/details/137666022 下载: ollama run llava:13bcli使用 图片地址前面空格就行 describe this image: /ai/a1.jpg

笔记本电脑安装属于自己的Llama 3 8B大模型和对话客户端

选择 Llama 3 模型版本&#xff08;8B&#xff0c;80 亿参数&#xff09; 特别注意&#xff1a; Meta 虽然开源了 Llama 3 大模型&#xff0c;但是每个版本都有 Meta 的许可协议&#xff0c;建议大家在接受使用这些模型所需的条款之前仔细阅读。 Llama 3 模型版本有几个&…

在矩池云使用GLM-4的详细指南(无感连GitHubHuggingFace)

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本&#xff0c;在多项测试中表现出超越已有同等规模开源模型的性能&#xff0c;它能兼顾多轮对话、网页浏览、代码执行、多语言、长文本推理等多种功能&#xff0c;性能更加强大。其多模态语言模型GLM-4V-9B在…

socket收发数据的处理

1. TCP 协议是一种基于数据流的协议 Socket的Receive方法只是把接收缓冲区的数据提取出来,当系统的接收缓冲区为空,Receive方法会被阻塞,直到里面有数据。 Socket的Send方法只是把数据写入到发送缓冲区里,具体的发送过程由操作系统负责。当操作系统的发送缓冲区满了,Send方法会…

《TCP/IP网络编程》(第十五章)套接字和标准I/O

之前数据通信时&#xff0c;使用的是read&write函数以及其他各种I/O函数&#xff0c;本章将使用标准I/O函数&#xff0c;例如C语言的fopen、fgetc、fputs等等&#xff1b;C语言的cout、cin等等 1.使用标准I/O函数的优点 ①跨平台兼容性&#xff1a; 标准I/O函数通常是跨平…

大数据实训项目(小麦种子)-04、大数据实训项目JavaWeb环境搭建

文章目录 前言运行前准备工作1、安装Hadoop3.1.0配置winutils原因描述配置方式注意点&#xff08;hadoop.dll拷贝System32目录下&#xff09; 2、hive运行报错&#xff08;The dir: /tmp/hive on HDFS should be writable. &#xff09; 项目环境搭建参考资料 前言 博主介绍&a…

【LLM之RAG】RAFT论文阅读笔记

研究背景 论文针对的主要问题是如何将预训练的大型语言模型&#xff08;LLMs&#xff09;适应特定领域的检索增强生成&#xff08;RAG&#xff09;。这些模型通常在广泛的文本数据上进行预训练&#xff0c;已经表现出在广义知识推理任务上的优越性能。然而&#xff0c;在特定领…

Google Earth Engine(GEE)——在控制台上答应出一个button按钮

函数: ui.Button(label, onClick, disabled, style) A clickable button with a text label. Arguments: label (String, optional): The buttons label. Defaults to an empty string. onClick (Function, optional): A callback fired when the button is clicked. T…

面试题 17.06. 2出现的次数

题解&#xff1a;. - 力扣&#xff08;LeetCode&#xff09;. - 力扣&#xff08;LeetCode&#xff09; 数位 DP 通用模板_哔哩哔哩_bilibili class Solution { public:int numberOf2sInRange(int n) {std::string str to_string(n);int len str.size();std::vector<std:…

SUSTAINABILITY,SCIESSCI双检期刊还能投吗?

本期&#xff0c;小编给大家介绍的是一本MDPI出版社旗下SCIE&SSCI双检“毕业神刊”——SUSTAINABILITY。据悉&#xff0c;早在2024年1月&#xff0c;ElSEVIER旗下的Scopus数据库已暂停收录检索期刊SUSTAINABILITY所发表文章&#xff0c;同时重新评估是否继续收录该期刊。随…

Pytest 读取excel文件参数化应用

本文是基于Pytest框架&#xff0c;读取excel中的文件&#xff0c;传入页面表单中&#xff0c;并做相应的断言实现。 1、编辑媒体需求 首先明确一下需求&#xff0c;我们需要对媒体的表单数据进行编辑&#xff0c;步骤如下&#xff1a; 具体表单如下图所示 1、登录 2、点击我…

electron基础使用

安装以及运行 当前node版本18&#xff0c;按照官网提供操作&#xff0c;npm init进行初始化操作&#xff0c;将index.js修改为main.js&#xff0c;执行npm install --save-dev electron。&#xff08;这里我挂梯子下载成功了。&#xff09;&#xff0c;添加如下代码至package.…

ORB算法特征提取

声明&#xff1a;学习过程中的知识总结&#xff0c;欢迎批评指正。 ORB算法提取两路输入图像&#xff08;图像A&#xff0c;图像B&#xff09;的特征点&#xff0c;根据提取的特征点进行特征匹配得到特征对。 ​ 图像金字塔 因为在现实世界中&#xff0c;同一个物体可能会以…

文生视频新王登场:Luma官宣免费、电影级大片生成,Sora?可灵?SD3.0?(内附网址)

✨点击这里✨&#xff1a;&#x1f680;原文链接&#xff1a;&#xff08;更好排版、视频播放、社群交流、最新AI开源项目、AI工具分享都在这个公众号&#xff01;&#xff09; 文生视频新王登场&#xff1a;Luma官宣免费、电影级大片生成&#xff0c;Sora&#xff1f;可灵&am…

Ubuntu server 24 (Linux) 安装部署samba服务器 共享文件目录 windows访问

1 安装 sudo apt update sudo apt-get install samba #启动服务 sudo systemctl restart smbd.service sudo systemctl enable smbd.service #查看服务 2 创建用户 #创建系统用户 sudo useradd test2 #配置用户密码 sudo smbpasswd -a test2 # smbpasswd: -a添加用户 …