笔记本电脑安装属于自己的Llama 3 8B大模型和对话客户端

选择 Llama 3 模型版本(8B,80 亿参数)

特别注意: Meta 虽然开源了 Llama 3 大模型,但是每个版本都有 Meta 的许可协议,建议大家在接受使用这些模型所需的条款之前仔细阅读。

Llama 3 模型版本有几个,我们主要关注 80 亿参数(Llama 3 8B)和 700 亿参数(Llama 3 70B)这两个版本。它们对电脑系统配置有不同的要求,主要计算资源(即:CPU/GPU)和内存来存储和处理模型权重:

  • Llama 3 8B 版本:对于 80 亿参数的模型,建议至少 4 核 CPU,至少 16GB 内存(推荐 32GB 或更高),以确保模型加载和运行过程中的流畅性;模型文件大小 5 GB 左右,磁盘空间有 10GB 足够了;GPU 是可选的,它可以显著提高推理速度

  • Llama 3 70B 版本:对于 700 亿参数的模型,CPU 要求显著提高(建议 16 核以上),至少需要 64GB 内存(推荐 128GB 或更高),模型在推理时会占用大量的内存资源;模型文件超过 20GB,远超 8B 版本;强烈推荐使用高端 GPU,以实现有效加速

综上所述,8B 版本比较适合我们个人电脑,硬件配置基本能符合,同时模型又不失推理效果:

笔记本电脑配置

下载 Llama 3 8B 模型文件

我们第一步是想自己部署尝鲜,因此直接下载压缩后的模型权重,文件为GGUF格式,GGUF格式是为了快速推理和优化内存使用而设计的,相比以前的GGML格式,GGUF支持更复杂的令牌化过程和特殊令牌处理,能更好地应对多样化的语言模型需求。就是因为有GGUF格式,Llama 3大语言模型才可以在笔记本电脑上运行,同时GGUF就一个文件,也简化了模型交换和部署的过程,它对促进模型的普及和应用有着积极作用。

因为Hugging Face官网正常无法访问,因此推荐国内镜像进行下载:

官网地址:[https://huggingface.co/QuantFactory/Meta-Llama-3-8B-Instruct-GGUF/tree/main]

国内镜像:[https://hf-mirror.com/QuantFactory/Meta-Llama-3-8B-Instruct-GGUF/tree/main]

GGUF 模型文件名称接受,如上述列表中,有Meta-Llama-3-8B-Instruct.Q4_K_M.ggufMeta-Llama-3-8B-Instruct.Q5_K_M.gguf等:

  • Instruct代表本模型是对基线模型进行了微调,用于更好地理解和生成遵循指令(instruction-following)的文本,以提供符合要求的响应

  • Q4/Q5 等代表模型权重的量化位数(其中QQuantization的缩小,即量化),是一种模型压缩技术,用于减少模型大小,同时降低对计算资源的需求(特别是内存),但又尽量保持模型的性能;数字45则代表量化精度的位数(Q4 是 4 位,Q5 是 5 位等),精度越高模型体积和内存使用也会越大,但仍然远小于未量化的基线模型

  • K_M/K_S代表含义笔者还未明确,K可能是Knowledge的缩写;M应该是Medium缩写(即中等模型),S应该是Small缩小(即小模型);若有明确的朋友,还望不吝告知,共同进步!

若个人电脑配置不是特别好,我们可以选择Q2_K版本(大小 3.2GB),它相较于Q4_K_M版本(大小 4.9GB),Q2版本的推理精度较低,但速度较快,而Q4版本在速度和精度之间均取得了很好的平衡,因此首选推荐Q4_K_M版本。

点击下载图标即可下载,由于文件较大,浏览器的下载容易过程容易终端,重试可继续下载(笔者浏览器中断了好几次,总共耗时 4 个多小时)

启动大模型服务端

GGUF模型量化文件下载完成后,我们就可以来运行Llama 3大模型了。首先打开一个 Terminal 终端窗口,切换到GGUF文件目录,设置 Python虚拟环境

# 切换到存放GGUF文件目录
cd ~/PythonSpace/Llama3-8B/# 切换Python 3.12.2版本
conda activate PY3.12.2# 创建并激活虚拟环境
python -m venv venv
source ./venv/bin/activate# 安装依赖包
pip install llama-cpp-python
pip install openai
pip install uvicorn
pip install starlette
pip install fastapi
pip install sse_starlette
pip install starlette_context
pip install pydantic_settings# 启动Llama大模型
python -m llama_cpp.server --host 0.0.0.0 --model \./Meta-Llama-3-8B-Instruct.Q4_K_M.gguf \--n_ctx 2048

最后启动 Llama 模型命令中,n_ctx 2048代表单次回话最大 Token 数量。启动成功,我们应该看到类似如下的信息:

恭喜你,你已经迈入 Llama 大模型大厦的大门了,后面存在无限可能,就看我们的创意了!
在这里插入图片描述

编写 Llama 模型对话客户端

接下来,我们将使用llama-cpp库和openai库在个人电脑上快速搭建Llama 模型客户端,开始尝鲜大模型(它目前只是个控制台客户端,还不能如 ChatGPT 那样有可视化的界面,但它的功能一样完备,所以请各位不用着急,我们先来体验一下 Llama 大模型,可视化的界面下文我在和大家分享)。

Python 客户端代码如下,为了后续方便演示,这个 Client.py 文件也放到GGUF模型文件一起:

  1. 我们使用OpenAI接口来与 Llama 交互,上面启动模型的最后,我们看到服务端 IP 是本地,端口是8000
  2. 接着,我们使用 2 条信息对历史记录进行初始化:第一个条是系统信息,第二个条是要求模型自我介绍的用户提示,为了避免长篇大论,我这里限制了回答的长度和字数
  3. 接下来,通过>提示符等待用户(即我们)输入,输入byequitexit任意一个即代表退出客户端
from openai import OpenAI# 注意服务端端口,因为是本地,所以不需要api_key
client = OpenAI(base_url="http://localhost:8000/v1",api_key="not-needed")# 对话历史:设定系统角色是一个只能助理,同时提交“自我介绍”问题
history = [{"role": "system", "content": "你是一个智能助理,你的回答总是正确的、有用的和内容非常精简."},{"role": "user", "content": "请用中文进行自我介绍,要求不能超过5句话,总字数不超过100个字。"},
]
print("\033[92;1m")# 首次自我介绍完毕,接下来是等代码我们的提示
while True:completion = client.chat.completions.create(model="local-model",messages=history,temperature=0.7,stream=True,)new_message = {"role": "assistant", "content": ""}for chunk in completion:if chunk.choices[0].delta.content:print(chunk.choices[0].delta.content, end="", flush=True)new_message["content"] += chunk.choices[0].delta.contenthistory.append(new_message)print("\033[91;1m")userinput = input("> ")if userinput.lower() in ["bye", "quit", "exit"]: # 我们输入bye/quit/exit等均退出客户端print("\033[0mBYE BYE!")breakhistory.append({"role": "user", "content": userinput})print("\033[92;1m")

我们新打开一个 Terminal 终端窗口,同样切换目标到 GGUF 文件目录,并且激活 Python 虚拟环境:

# 切换到存放GGUF文件目录
cd ~/PythonSpace/Llama3-8B/# 切换Python 3.12.2版本
conda activate PY3.12.2# 激活虚拟环境(之前已经创建)
source ./venv/bin/activate# 启动客户端
python client.py

首次打开客户端,因为有第一个默认的自我介绍问题,稍微有点忙,但是可以看到,Llama 模型按照我们的要求完成了自我介绍,总体还不赖:

Llama模型自我介绍

接着,我给Llama 模型来了一个类哲学的问题:请你用中文问答:人为什么要不断追求卓越?

Llama 模型的回答非常精简,且只有 5 句话,所谓言简意赅:

Llama回答:人为什么要不断追求卓越?

上图中,红色为我的输入,绿色为模型的答复,超级赞!

禅定:总结

现在我们的Llama 模型聊天机器人已准备就绪,我们想问什么就可以问什么,尽情享受吧。

当然,我们废了大半天劲,如果只是和模型简单的聊聊天,那就有点可惜了,或者说如果要人工输入,那我们本地部署的意义就不大。

假设能够通过程序的方式,自动调用本地部署的Llama 模型是不是可以提供我们工作效率;Llama 模型的能力非常广泛,可用于多种场景和任务:

  1. 自然语言生成:Llama 3 能够生成连贯、高质量的文本,包括文章、故事、诗歌等创意写作,以及邮件、报告等实用文体。
  2. 对话系统:模型可以用于构建聊天机器人或 AI 助手,进行自然、流畅的对话交流,提供信息查询、娱乐互动等功能。
  3. 代码生成:它在代码生成任务上表现优异,能够根据描述自动生成或补全代码片段,辅助程序员提高开发效率。
  4. 翻译:Llama 3 支持跨语言应用,可以实现文本的自动翻译,覆盖多种语言对。
  5. 文本摘要:能够自动生成文章、报告的摘要,提取关键信息,帮助用户快速浏览大量内容。
  6. 情感分析和文本分类:可以识别文本中的情绪倾向、主题分类,为企业提供市场洞察、客户服务优化等。
  7. 问答系统:高效准确地回答用户提出的问题,无论是常识性问题还是专业领域的复杂询问。
  8. 个性化推荐:基于用户的历史交互和偏好,生成个性化的推荐内容,如新闻、商品、音乐等。
  9. 文本生成图像描述:结合多模态技术,Llama 3 可以根据文本描述生成图像内容的描述,助力图像生成或图像检索。
  10. 法律文档处理:微调后的模型可以用于法律文档的理解、分析,比如合同审查、案例研究等。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/853232.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在矩池云使用GLM-4的详细指南(无感连GitHubHuggingFace)

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本,在多项测试中表现出超越已有同等规模开源模型的性能,它能兼顾多轮对话、网页浏览、代码执行、多语言、长文本推理等多种功能,性能更加强大。其多模态语言模型GLM-4V-9B在…

socket收发数据的处理

1. TCP 协议是一种基于数据流的协议 Socket的Receive方法只是把接收缓冲区的数据提取出来,当系统的接收缓冲区为空,Receive方法会被阻塞,直到里面有数据。 Socket的Send方法只是把数据写入到发送缓冲区里,具体的发送过程由操作系统负责。当操作系统的发送缓冲区满了,Send方法会…

《TCP/IP网络编程》(第十五章)套接字和标准I/O

之前数据通信时,使用的是read&write函数以及其他各种I/O函数,本章将使用标准I/O函数,例如C语言的fopen、fgetc、fputs等等;C语言的cout、cin等等 1.使用标准I/O函数的优点 ①跨平台兼容性: 标准I/O函数通常是跨平…

大数据实训项目(小麦种子)-04、大数据实训项目JavaWeb环境搭建

文章目录 前言运行前准备工作1、安装Hadoop3.1.0配置winutils原因描述配置方式注意点(hadoop.dll拷贝System32目录下) 2、hive运行报错(The dir: /tmp/hive on HDFS should be writable. ) 项目环境搭建参考资料 前言 博主介绍&a…

【LLM之RAG】RAFT论文阅读笔记

研究背景 论文针对的主要问题是如何将预训练的大型语言模型(LLMs)适应特定领域的检索增强生成(RAG)。这些模型通常在广泛的文本数据上进行预训练,已经表现出在广义知识推理任务上的优越性能。然而,在特定领…

Google Earth Engine(GEE)——在控制台上答应出一个button按钮

函数: ui.Button(label, onClick, disabled, style) A clickable button with a text label. Arguments: label (String, optional): The buttons label. Defaults to an empty string. onClick (Function, optional): A callback fired when the button is clicked. T…

面试题 17.06. 2出现的次数

题解&#xff1a;. - 力扣&#xff08;LeetCode&#xff09;. - 力扣&#xff08;LeetCode&#xff09; 数位 DP 通用模板_哔哩哔哩_bilibili class Solution { public:int numberOf2sInRange(int n) {std::string str to_string(n);int len str.size();std::vector<std:…

SUSTAINABILITY,SCIESSCI双检期刊还能投吗?

本期&#xff0c;小编给大家介绍的是一本MDPI出版社旗下SCIE&SSCI双检“毕业神刊”——SUSTAINABILITY。据悉&#xff0c;早在2024年1月&#xff0c;ElSEVIER旗下的Scopus数据库已暂停收录检索期刊SUSTAINABILITY所发表文章&#xff0c;同时重新评估是否继续收录该期刊。随…

Pytest 读取excel文件参数化应用

本文是基于Pytest框架&#xff0c;读取excel中的文件&#xff0c;传入页面表单中&#xff0c;并做相应的断言实现。 1、编辑媒体需求 首先明确一下需求&#xff0c;我们需要对媒体的表单数据进行编辑&#xff0c;步骤如下&#xff1a; 具体表单如下图所示 1、登录 2、点击我…

electron基础使用

安装以及运行 当前node版本18&#xff0c;按照官网提供操作&#xff0c;npm init进行初始化操作&#xff0c;将index.js修改为main.js&#xff0c;执行npm install --save-dev electron。&#xff08;这里我挂梯子下载成功了。&#xff09;&#xff0c;添加如下代码至package.…

ORB算法特征提取

声明&#xff1a;学习过程中的知识总结&#xff0c;欢迎批评指正。 ORB算法提取两路输入图像&#xff08;图像A&#xff0c;图像B&#xff09;的特征点&#xff0c;根据提取的特征点进行特征匹配得到特征对。 ​ 图像金字塔 因为在现实世界中&#xff0c;同一个物体可能会以…

文生视频新王登场:Luma官宣免费、电影级大片生成,Sora?可灵?SD3.0?(内附网址)

✨点击这里✨&#xff1a;&#x1f680;原文链接&#xff1a;&#xff08;更好排版、视频播放、社群交流、最新AI开源项目、AI工具分享都在这个公众号&#xff01;&#xff09; 文生视频新王登场&#xff1a;Luma官宣免费、电影级大片生成&#xff0c;Sora&#xff1f;可灵&am…

Ubuntu server 24 (Linux) 安装部署samba服务器 共享文件目录 windows访问

1 安装 sudo apt update sudo apt-get install samba #启动服务 sudo systemctl restart smbd.service sudo systemctl enable smbd.service #查看服务 2 创建用户 #创建系统用户 sudo useradd test2 #配置用户密码 sudo smbpasswd -a test2 # smbpasswd: -a添加用户 …

SD3开源:AI绘画的新纪元,出图效果巨好,不容错过!(附教程)

大家好&#xff0c;我是画画的小强。 这两天&#xff0c;Stability AI 将史上最牛的AI绘画模型SD3开源了&#xff0c;真是有格局&#xff01; 虽说只是中杯的20亿参数版本&#xff0c;但我已经很满足了&#xff0c;再高的版本&#xff0c;我这普通的16G 4070Ti Super 显卡也跑…

HAL库开发--串口

知不足而奋进 望远山而前行 目录 文章目录 前言 学习目标 学习内容 开发流程 串口功能配置 串口功能开启 串口中断配置 串口参数配置 查询配置结果 发送功能测试 中断接收功能测试 printf配置 DMA收发 配置 DMA发送 DMA接收(方式1) DMA接收(方式2) 总结 前言…

shell编程基础(第18篇:更多的文件操作命令介绍)

前言 对于文件来说&#xff0c;除了它的文件内容之外&#xff0c;就是对其文件本身的操作&#xff0c;比如我们想要重命名文件、移动文件、复制文件、已经获取文件所在目录&#xff0c;文件名等操作&#xff0c;今天一起学习更多的文件操作相关的命令 basename 用于获取文件名…

C++ 32 之 静态成员函数

#include <iostream> #include <string> using namespace std;// 特点: // 1.在编译阶段就分配了内存空间 // 2.类内声明&#xff0c;在类外进行初始化 // 3.所有对象共享一份静态成员数据 class Students02{ public:int s_c;static int s_d;// 静态成员函数&#…

YOLOv8可视化界面PYQT5

yolov8&#xff0c;可视化界面pyqt。支持图片检测&#xff0c;视频检测&#xff0c;摄像头检测等&#xff0c;实时显示检测画面。支持自定义数据集&#xff0c;计数&#xff0c;fps展示……,即插即用&#xff0c;无需更改太多代码

非关系型数据库NoSQL数据层解决方案 之 Mongodb 简介 下载安装 springboot整合与读写操作

MongoDB 简介 MongoDB是一个开源的面向文档的NoSQL数据库&#xff0c;它采用了分布式文件存储的数据结构&#xff0c;是当前非常流行的数据库之一。 以下是MongoDB的主要特点和优势&#xff1a; 面向文档的存储&#xff1a; MongoDB是一个面向文档的数据库管理系统&#xff0…

TLE9879的基于Arduino调试板SWD刷写接口

官方的Arduino评估板&#xff0c;如下图所示&#xff1a; 如果你有官方的调试器&#xff0c;应该不用关注本文章&#xff0c;如下图连接就是&#xff1a; 如果&#xff0c;您和博主一样需要自己飞线的话&#xff0c;如下图所示&#xff1a;PCB的名称在右边整理&#xff0c;SWD的…