细说NLP中的Embedding层

文章目录

  • 前言
  • 一、为什么要引入Embedding层
  • 二、Embedding层是怎么发挥作用的?
  • 三、感受Embedding的强大
  • 四、为什么理解Embedding的底层原理?
  • 总结


前言

在构建高效的自然语言处理模型时,Embedding层是不可或缺的组成部分。它不仅可以帮助我们捕获词汇之间的语义关系,还能提高模型的性能。在本篇博客中,我们将详细介绍Embedding层的基本原理、使用方法以及它在深度学习框架中的实现,帮助你更好地理解和应用这一技术。

一、为什么要引入Embedding层

你是否曾经遇到过这样的问题:在处理大量文本数据时,如何有效地表示词汇或短语?传统的独热编码(One-Hot Encoding)方法存在哪些局限性?Embedding层又是如何解决这些问题的?接下来,我们将一起探讨Embedding层的工作原理及其在自然语言处理中的应用。

传统的onehot编码的局限性在于:
1.维度过高且稀疏:当词库(或特征集合)很大时,独热编码会生成一个维度极高的向量,其中大部分元素为0,只有对应特征位置的元素为1。这种高维且稀疏的表示方式不仅占用大量的存储空间,而且在后续的计算中会导致计算成本显著增加。
2.丢失了单词间的语义关系:独热编码仅根据单词在词库中的索引位置进行编码,没有考虑到单词之间的语义关系。
3.对词汇数量的敏感度:独热编码的维度与词库的大小直接相关。如果词库中的单词数量增加,那么编码的维度也会相应增加,这会导致上述的维度过高和稀疏性问题进一步加剧。
4.无法处理未知单词:如果在测试或应用阶段遇到了一个训练阶段中未曾出现过的单词(即未知单词),那么独热编码将无法为其生成一个有效的表示向量,因为该单词在词库中没有对应的索引位置。

随着语料库越来越大,在处理大规模这些文本数据或需要捕捉单词间语义关系时,one hot编码的局限性变得尤为突出。为了克服这些局限性,人们发展出了如词嵌入 等更先进的文本表示方法。

而且,在大语言模型盛行的今天,Embedding层仍然是不可或缺的一部分,它在表示文本内容、增强模型性能以及解决长文本输入问题等方面发挥着重要作用。

二、Embedding层是怎么发挥作用的?

在这里我以经典的Word2Vec为例子。简单介绍一下Word2Vec,它是一个将单词表示为向量的的词向量学习方法。有两种实现方式,分别是CBOWSkip-Gram模型。
方便起见,这里以CBOW举例子了。他的思想是这样的:给出目标单词周围的词,预测目标单词。就比如一句话原本的语句是“我爱你”,后来把“爱”遮住,使用CBOW预测出“我”和“你”之间的单词是什么。
在这里插入图片描述

网络结构如图所示:(输入下面的两个方块是周围单词,映射下面的方块是低维、稠密的词向量表示,输出下面的方块表示用softmax得出的得分)

在这里插入图片描述

CBOW做的是输入矩阵(即周围单词的矩阵表示)与一个输入单词权重矩阵 W i n W_{in} Win(也称嵌入矩阵)做矩阵相乘。这样就把输入变成了低维稠密的单词向量的形式,然后把这个单词向量表示进行softmax输出,取概率最大的单词。

本文章是为了介绍Embedding层,简单起见,所以我们聚焦于一个其中一个周围单词和 W i n W_{in} Win矩阵乘积的情况。
在这里插入图片描述

如果单词的输入矩阵用one hot向量表示。我们那么这个过程就变成了一下情况
输入单词向量形状是1 * 1000000, W i n W_{in} Win的形状是1000000 * 100,最终得到 1 * 100的低纬稠密向量。
在这里插入图片描述

这个过程有一个问题,矩阵相乘的时间复杂度是1 * 1000000 * 100 = 100000000。这个过程需要这么大的计算量。

但是,如果仔细观察的话,我们做的知识把第i行的元素提取出来而已。

为了解决这个问题,我们引入Embedding层,做的就是把 W i n W_{in} Win的某一行提取出来。

  • Embedding层的作用:一个 可以抽取单词id对应的行(向量) 的层。
  • 还有一个说法也比较贴切,Embedding是一个简单的查找表

三、感受Embedding的强大

引入Embedding层之后,这样问题就简单了。
考虑更复杂的一种情况,输入是100 * 1000000(输入100个单词,用每个单词用1000000维onehot表示)的情况,要把它压缩成100 * 100的矩阵。
原本的计算是这样的。
在这里插入图片描述
计算量是100 * 1000000 * 1000000=100000000000000。看数字可能感觉不够明显,翻译成中文就是10万亿。更何况语料库更加庞大的今天,可以说如果使用传统方法计算量简直是天文数字,根本不可以实现。

但是如今有了Embedding的方法,就简单多了。
在这里插入图片描述

我们要做的无非就是根据单词对应的序号从 W i n W_in Win中选出100行而已。
计算量=100 * 100 = 10000。(第一个100是输入的单词数,第二个100是 W i n W_{in} Win的100的纬度)
这样就把一个上面不可能解决的问题变成了一个很简单的取数问题。
简直爽爆了!

四、为什么理解Embedding的底层原理?

现如今,深度学习的框架十分方便,只要输入文本对应的整数索引(也称为类别索引或token索引),使用nn.Embedding(input),自动就转化成了想要的token(分词或单词)的低纬稠密表示。

但是我们不能知其然不知其所以然。虽然框架很方便,实际工作中光会调用接口是远远不够的。

了解Embedding的底层原理有助于你更深入地理解模型是如何工作的,在某些情况下,你可能需要自定义Embedding层的实现,以适应特定的任务或数据,从而进一步提高模型的运行效率。

总之,尽管深度学习框架提供了方便的接口来实现Embedding层,但学习其底层原理仍然是非常重要的。这不仅可以帮助你更好地理解模型的工作原理,还可以提高你的技术能力和创新能力


总结

在本文中,我们深入探讨了Embedding层的底层实现。我们了解到Embedding层在深度学习中扮演着将离散索引映射为连续向量空间的重要角色,

通过对Embedding层底层实现的解析,我们不难发现其高效性和灵活性的关键。使用嵌入矩阵作为查找表,Embedding层能够快速地根据索引返回对应的嵌入向量,而无需进行复杂的计算。同时,嵌入向量的维度可以根据任务需求进行灵活调整,以适应不同的应用场景。

最后,我想强调的是,Embedding层只是深度学习中的一个组成部分,它的作用和价值需要与其他网络层相结合才能充分发挥。因此,在学习和使用Embedding层时,我们需要深入理解其背后的原理和实现细节,并结合具体任务和数据集进行实践和调整。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/851103.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

14.《C语言》——【牛客网BC116—BC123题目讲解】

亲爱的读者,大家好!我是一名正在学习编程的高校生。在这个博客里,我将和大家一起探讨编程技巧、分享实用工具,并交流学习心得。希望通过我的博客,你能学到有用的知识,提高自己的技能,成为一名优…

标量、向量、矩阵、张量是什么?

参考视频:标量、向量、矩阵、张量-机器学习-李文哲AI人工智能培训_哔哩哔哩_bilibili 参考资料:深度学习基础:标量、向量、矩阵、张量_深度学习本质是矩阵-CSDN博客 标量是一个独立存在的数,比如线性代数中的一个实数5就可以被看…

嵌入式Linux系统编程 — 3.5 utime、utimes、futimens、utimensat函数修改文件时间属性

目录 1 文件的时间属性简介 2 utime()函数 2.1 utime()函数简介 2.2 示例程序 3 utimes()函数 3.1 utimes()函数简介 3.2 示例程序 4 futimens()函数 4.1 futimens()函数简介 4.2 示例程序 5 utimensat()函数 5.1 utimensat()函数简介 5.2 示例程序 1 文件的时间…

react修改本地运行项目的端口

一、描述 如果你想让项目在你想要的端口打开的话,就需要进行设置 二、代码 设置一下pages.json文件就可以了,如下: 如果想打开项目不需要点击下面的链接地址,让他运行npm run dev之后自己直接打开到浏览器的话,在后…

selenium自动化测试入门 —— 上传文件

selenium无法识别非web的控件,上传文件窗口为系统自带,无法识别窗口元素。 上传文件有两种场景:input控制上传和非input控件上传。 大多数情况都是input控件上传文件,只有非常少数的使用自定义的非input上传文件。 一、input控…

2003远程桌面端口修改,远程桌面端口修改的方法有哪些

方法一:通过修改注册表 1、打开注册表编辑器: 打开“开始”菜单,点击“运行”,输入“regedit”,然后按下“Enter”键。 2、导航到远程桌面服务的注册表项: 依次展开以下路径: HKEY_LOCAL_M…

小程序名片怎么生成?AI名片生成器源码系统 为企业店铺创建自己的数字名片

在数字化时代,小程序名片已经成为企业店铺展示自身形象、推广产品和服务的重要工具。分享一个AI名片生成器源码系统春哥AI雷达智能名片小程序系统企业商业运营版,含完整代码包和详细的图文安装部署搭建教程,新手也能轻松使用,源码…

在iPhone上恢复删除Safari历史记录的方法[2024]

您是否正在寻找恢复 iPhone 上已删除的 Safari 历史记录的最佳方法?好吧,这篇文章提供了 4 种在有/无备份的情况下恢复 iPhone 上已删除的 Safari 历史记录的最佳方法。现在按照分步指南进行操作。 iPhone 上的 Safari 历史记录会被永久删除吗&#xff1…

mysql-community-libs-5.7.44-1.el7.x86_64.rpm 的公钥尚未安装

在 CentOS 或 RHEL 系统上安装 RPM 包时,如果遇到“公钥尚未安装”的问题,通常是因为系统没有导入相应的 GPG 公钥。MySQL 官方提供了一个 GPG 公钥,用于验证 RPM 包的签名。 以下是解决该问题的步骤: 下载并导入 MySQL 官方的 GP…

杨校老师项目之基于SpringBoot的理发店的预约管理系统

原系统是SSMJSP页面构成,先被修改为SpringBoot JSP页面 自助下载渠道: https://download.csdn.net/download/kese7952/89417001,或 点我下载 理发师信息: 理发师详细信息 公告信息 员工登录: 管理员登录

【数据结构与算法】使用单链表实现队列:原理、步骤与应用

💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《数据结构与算法》 期待您的关注 ​ 目录 一、引言 🎄队列的概念 🎄为什么要用单链表实现队列 二、单…

基于JSP的健身俱乐部会员管理系统的设计与实现

【免费】基于JSP的健身俱乐部会员管理系统.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89416957 基于JSP的健身俱乐部会员管理系统的设计与实现 摘 要 目前我国虽然己经开发出了应用计算机操作的健身俱乐部管理系统,但管理软件,管理方…

【电机控制】FOC算法验证步骤——电流环PI参数、速度环PI参数

【电机控制】FOC算法验证步骤——电流环PI参数、速度环PI参数 文章目录 前言一、电流环PI1.TI手册 二、速度环PI1.TI手册——根据稳定性和带宽计算速度环PI参数2.TI手册——根据阻尼因子计算速度和电流 PI 增益计算速度环PI参数 三、参考文献总结 前言 【电机控制】直流有刷电…

分布式版本控制工具软件——Git概述

目录 一、Git概述1.为什么要学习Git?(1)SCM概念(2)SCM实现 2.什么是版本控制?(1)版本控制软件的基础功能(2)集中式版本控制(3)分布式版…

tkinter用按钮实现工具栏

tkinter用按钮实现工具栏 效果代码 使用 Python 的 Tkinter 库,我们可以轻松创建一个包含按钮的工具栏。本文将介绍如何在 Tkinter 中创建一个 简单的工具栏,并演示如何添加功能按钮。 效果 代码 import tkinter as tk from tkinter import ttk, filed…

【内存管理】内存布局

ARM32位系统的内存布局图 32位操作系统的内存布局很经典,很多书籍都是以32位系统为例子去讲解的。32位的系统可访问的地址空间为4GB,用户空间为1GB ~ 3GB,内核空间为3GB ~ 4GB。 为什么要划分为用户空间和内核空间呢? 一般处理器…

【PPT技巧】PPT文件设置了修改权限,如何取消权限编辑文件?

不知道大家在使用PPT文件的时候,是否遇到过下面的提示框,这就是PPT文件设置了修改权限,只有输入密码才可以编辑文件。 如果我们没有输入密码,以只读方式进入,那么我们会发现功能栏中的按钮全是灰色,无法使用…

Spring AOP 基于注解实现用户权限校验

主要注解 interface:继承了 Annotation 接口的自定义注解,定义注释类型。 Target:表示这个注解可以应用的地方,此处做权限校验是用在方法上的,所以此处的值为 Target(ElementType.METHOD) …

vue-cli是什么?和 webpack是什么关系?

前言 Vue CLI是Vue.js项目的官方脚手架,基于Node.js与Webpack构建。安装Vue CLI前需确保Node.js已安装,随后通过npm全局安装。Vue CLI能迅速创建和管理Vue.js项目,提升开发效率。而Webpack则负责资源打包,通过配置文件管理依赖、插…

自然语言处理:第三十四章Lora VS FineTuning

文章链接: [2405.09673] LoRA Learns Less and Forgets Less (arxiv.org) 这是一篇来自哥伦比亚大学和databricks对Lora 和FineTuning 更深一步的研究。有关于Lora可以参考我之前的文章: 自然语言处理: 第十二章LoRA解读_lora自然英语处理-CSDN博客 有关于fine_tuning 可以参考…