解锁ChatGPT:从GPT-2实践入手解密ChatGPT

⭐️我叫忆_恒心,一名喜欢书写博客的研究生👨‍🎓。
如果觉得本文能帮到您,麻烦点个赞👍呗!

近期会不断在专栏里进行更新讲解博客~~~
有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支持一下呗。👍⭐️❤️
📂Qt5.9专栏定期更新Qt的一些项目Demo
📂项目与比赛专栏定期更新比赛的一些心得面试项目常被问到的知识点。

一、ChatGPT架构概览

随着自然语言处理(NLP)的快速进展,由OpenAI推出的ChatGPT引领了对话型AI的新趋势。基于GPT架构,这一AI不仅改变了公众与AI的互动模式,还引起了广泛的技术内核探讨。本部分将详细分析ChatGPT的原理,从模型结构、训练方式到应用实践等方面进行阐述。
GPT模型概述
GPT基于Transformer架构,初期在大量文本数据上进行预训练,掌握语言模式后在特定任务上细化调优。其预训练是一种无监督学习,旨在通过预测被遮蔽的文本来理解语言结构。

ChatGPT的原理持续迭代,现行的GPT-4和原始模型都基于OpenAI团队的《Generative Pre-Training》论文。

在这里插入图片描述

简单地来说,堆叠多个Transformer模型,不断微调,因此在早几年的,自然语言处理时,GPT论文的复现难度比较大,且成本非常高

说到这就不得不提一下Transformer架构。
Transformer架构
这个思路来源于《attention is all you need》,这论文现在的饮用量已经高达了12W了,非常推荐大家去读一下原文。
在这里插入图片描述
Transformer模型是由多个编码器(Encoder)和解码器(Decoder)层堆叠而成,是目前自然语言处理技术的核心。其核心技术是自注意力机制(Self-Attention Mechanism),允许模型在处理输入的每个单词时,考虑到句子中的其他单词,从而更好地理解语境。
在这里插入图片描述
简单来说,这篇论文主要介绍下面的内容:

“Attention Is All You Need”,作者是 Ashish Vaswani 等人。该论文提出了一种新的简单网络架构——Transformer,它完全基于注意力机制,摒弃了递归和卷积。在两个机器翻译任务上的实验表明,这些模型在质量上更优越,同时更具并行性,训练所需的时间也显著减少。

二、模型训练与微调

ChatGPT目前并没有进行开源,但是如果从深度解析原来来看,我们完全可以通过GPT2.0 来完成学习。
GPT-2的预训练阶段,模型使用一个非常大的数据集进行训练,这些数据集包括从网上收集的8百万个网页的文本。预训练的目标是让模型学会语言的统计规律,通过预测给定文本片段中的下一个单词来进行。
GPT2

2.1 预训练过程:

  1. 数据收集: 搜集各类文本数据如书籍、网页、新闻。
  2. 训练目标: 预测文本中的下一个词汇。

2.2 微调过程:

  1. 特定数据: 使用对话型数据集进行优化,提升模型的对话能力。
  2. 调整目标: 提高生成对话的连贯性和相关性。

要撰写一个关于OpenAI GPT-2模型的技术博客,你可以从以下几个方面入手:

  1. 模型概述:介绍GPT-2的基本架构和其在自然语言处理中的应用,强调其使用变换器(Transformer)模型的重要性。

  2. 模型版本和参数:解释不同的模型版本(如124M、355M、774M和1.5B),每个版本的参数和层数的差异。

  3. 关键代码讲解

    • 模型下载代码:讲解如何使用download_model.py脚本下载不同大小的模型文件。
      import os
      os.system("python download_model.py 124M")  # 下载124M模型
      
    • 生成文本示例代码:展示如何使用generate_unconditional_samples.py生成文本。
      os.system("python src/generate_unconditional_samples.py --model_name='124M' --nsamples=1 --length=100")
      
  4. 实际应用案例:描述如何将GPT-2应用于聊天机器人、内容生成等场景。

2.3 代码示例(伪代码):

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW# 加载预训练模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
optimizer = AdamW(model.parameters(), lr=5e-5)# 示例文本输入
input_ids = tokenizer.encode("Sample text input:", return_tensors='pt')# 微调模型
for _ in range(100):outputs = model(input_ids, labels=input_ids)loss = outputs.lossloss.backward()optimizer.step()optimizer.zero_grad()

三、实际应用与性能优化

在这里插入图片描述

在实际应用中,ChatGPT可服务于多种业务场景,如自动客服、内容推荐、自动编程辅助等。针对具体任务,可能需要通过模型剪枝来降低模型大小,或使用量化技术减少计算资源的消耗,从而提高响应速度和处理效率。这些技术帮助部署在资源受限的环境中,同时保持良好的性能。

项目 GPT2-chitchat 是由Yang Jianxin开发的一个开源代码库,用于构建基于GPT-2模型的中文闲聊机器人。该项目在GitHub上托管,并且是基于Hugging Face的Transformers库实现的。它利用了DialoGPT的多轮对话生成思想(MMI),以提升对话的自然性和连贯性【10†source】。

1 主要特点和结构

  • 代码结构:包括数据预处理(preprocess.py),模型训练(train.py),以及用户交互(interact.py)三个主要脚本。模型的训练数据和生成的字典也包含在项目文件夹中。
  • 模型训练与微调:使用train.py脚本进行模型训练,支持早停(early stopping)来防止过拟合。模型训练过程中,将多轮对话数据进行拼接后输入模型进行自回归训练。
  • 人机交互:通过interact.py脚本实现,允许用户与训练好的模型进行实时对话。该脚本支持调整多个生成参数,如topktopp等,以优化对话生成的质量。

2 环境依赖

项目运行需要Python 3.6环境,并且依赖于特定版本的transformerspytorch库(transformers4.2.0, pytorch1.7.0)。

3 应用示例

在模型训练好后,可以使用interact.py脚本与模型进行交互,生成的对话实例体现了模型的响应能力和对话质量。

4 数据预处理

使用preprocess.py对原始文本数据进行处理,包括分词和序列化,以便训练使用。预处理后的数据保存在train.pkl文件中,格式为多轮对话的列表。

该项目还包括丰富的闲聊语料资源链接,供进一步训练和测试使用。

5 模型分享

作者还提供了预训练模型的下载链接,方便用户直接下载使用,而无需从头开始训练。

整体而言,GPT2-chitchat 提供了一个完整的框架和丰富的工具,使研究人员和开发者能够在中文NLP领域,特别是在自动对话生成方面,进行实验和应用开发。更多详情可以参考其GitHub仓库。

四、总结

通过深入探索ChatGPT的架构、训练过程和应用场景,我们可以更好地理解并利用这项技术。希望本文能为读者提供有价值的见解和帮助。

往期优秀文章推荐:

  1. 研究生入门工具——让你事半功倍的SCI、EI论文写作神器
  2. 磕磕绊绊的双非硕秋招之路小结
  3. 研一学习笔记-小白NLP入门学习笔记
  4. C++ LinuxWebServer 2万7千字的面经长文(上)
  5. C++Qt5.9学习笔记-事件1.5W字总结
    在这里插入图片描述

资料、源码获取以及更多粉丝福利
推荐

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/850993.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习】—— 神经网络介绍

神经网络介绍 本系列主要是吴恩达深度学习系列视频的笔记,传送门:https://www.coursera.org/deeplearning-ai 目录 神经网络介绍神经网络的应用深度学习兴起的原因 神经网络,全称人工神经网络(Artificial Neural Network&#xf…

python生成免费的ssl证书

测试SSL证书不需要验证域名权限 执行 pip install cryptography from cryptography import x509 from cryptography.x509.oid import NameOID from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import r…

私有化AI搜索引擎FreeAskInternet

什么是 FreeAskInternet FreeAskInternet 是一个完全免费、私有且本地运行的搜索聚合器,并使用 LLM 生成答案,无需 GPU。用户可以提出问题,系统将使用 searxng 进行多引擎搜索,并将搜索结果合并到ChatGPT3.5 LLM 中,并…

Python私教张大鹏 Vue3整合AntDesignVue之Breadcrumb 面包屑

显示当前页面在系统层级结构中的位置&#xff0c;并能向上返回。 何时使用 当系统拥有超过两级以上的层级结构时&#xff1b; 当需要告知用户『你在哪里』时&#xff1b; 当需要向上导航的功能时。 案例&#xff1a;面包屑导航基本使用 核心代码&#xff1a; <template…

【Linux文件篇】系统文件、文件描述符与重定向的实用指南

W...Y的主页 &#x1f60a; 代码仓库分享&#x1f495; 前言&#xff1a;相信大家对文件都不会太陌生、也不会太熟悉。在没有学习Linux操作系统时&#xff0c;我们在学习C或C时都学过如何去创建、打开、读写等待文件的操作&#xff0c;知道一些语言级别的一些接口与函数。但…

【Anaconda】 anaconda常用命令总结

【Anaconda】 anaconda常用命令总结 一、创建虚拟环境二、激活/使用/进入某个虚拟环境三、退出当前环境四、复制某个虚拟环境五、删除某个环境六、查看当前所有环境七、查看当前虚拟环境下的所有安装包八、安装或卸载包(进入虚拟环境之后&#xff09;九、分享虚拟环境十、源服务…

leetcode刷题记录34-100297. 找到连续赢 K 场比赛的第一位玩家

问题描述 有 n 位玩家在进行比赛&#xff0c;玩家编号依次为 0 到 n - 1 。 给你一个长度为 n 的整数数组 skills 和一个 正 整数 k &#xff0c;其中 skills[i] 是第 i 位玩家的技能等级。skills 中所有整数 互不相同 。 所有玩家从编号 0 到 n - 1 排成一列。 比赛进行方式如…

实体商铺私域流量打造策略:从引流到转化的全链路解析

在数字化时代&#xff0c;实体商铺面临着前所未有的挑战与机遇。随着线上购物的兴起&#xff0c;传统商铺如何吸引并留住顾客&#xff0c;成为了每个实体店家必须面对的问题。私域流量的打造&#xff0c;正是解决这一问题的关键所在。本文将从引流、留存、转化三个方面&#xf…

Java基础教程 - 15 进阶部分

更好的阅读体验&#xff1a;点这里 &#xff08; www.doubibiji.com &#xff09; 15 进阶部分 网络编程、注解、反射、泛型、新特性等&#xff0c;见高级部分。 继续学习 Java进阶教程

冯喜运:6.10周一黄金原油行情趋势分析及独家操作建议

【黄金消息面分析】&#xff1a;上周全球金融市场惊现戏剧性大逆转&#xff0c;美国多项经济数据证实劳动力市场降温&#xff0c;9月降息重返视野令全球风险情绪几乎陷入狂热状态&#xff0c;全球股市接连创新高&#xff0c;但上周五意外“爆表”的非农令市场惊现大逆转&#x…

基于pytorch_lightning测试resnet18不同激活方式在CIFAR10数据集上的精度

基于pytorch_lightning测试resnet18不同激活方式在CIFAR10数据集上的精度 一.曲线1.train_acc2.val_acc3.train_loss4.lr 二.代码 本文介绍了如何基于pytorch_lightning测试resnet18不同激活方式在CIFAR10数据集上的精度 特别说明: 1.NoActive:没有任何激活函数 2.SparseActiva…

Spring (49)OpenFeign

OpenFeign是Spring Cloud在Feign的基础上进行了增强&#xff0c;使其更易于与Spring Boot应用集成。它提供了一种声明式的方法来调用HTTP服务&#xff0c;从而简化了服务间调用的开发。下面我们将通过源码解析和代码演示来深入理解OpenFeign的工作原理及其使用方法。 1. 核心概…

调研管理系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;基础数据管理&#xff0c;教师类型管理&#xff0c;课程类型管理&#xff0c;公告类型管理 前台账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;论坛&#…

【JS封装-工具函数】强化编程实践:精选JavaScript函数封装集锦-关于工具函数 (如深度克隆、浅拷贝、递归、防抖和节流等)

目录 浅拷贝 深度克隆 递归函数示例&#xff1a;计算数组深度 防抖函数 节流函数 扁平化数组 检查对象是否为空 生成随机字符串 深度比较两个对象是否相等 浅拷贝 /*** 浅拷贝对象或数组。* param {Object|Array} obj 要拷贝的对象或数组。* returns {Object|Array} …

腾讯云和windows11安装frp,实现内网穿透

一、内网穿透目的 实现公网上&#xff0c;访问到windows上启动的web服务 二、内网穿透的环境准备 公网服务器、windows11的电脑、frp软件(需要准备两个软件&#xff0c;一个是安装到公网服务器上的&#xff0c;一个是安装到windows上的) frp下载地址下载版本 1.此版本(老版…

C/C++|std::function 浅度解析

std::function 是 C 标准库中的一个通用多态函数包装器。它可以存储、复制和调用任意可调用目标&#xff08;函数、lambda 表达式、绑定表达式或其他函数对象&#xff09;。 std::function 占有固定尺寸的内存&#xff0c;这是因为它的实现方式决定了这一点。让我们深入探讨这一…

论文阅读:Indoor Scene Layout Estimation from a Single Image

项目地址&#xff1a;https://github.com/leVirve/lsun-room/tree/master 发表时间&#xff1a;2018 icpr 场景理解&#xff0c;在现实交互的众多方面中&#xff0c;因其在增强现实&#xff08;AR&#xff09;等应用中的相关性而得到广泛关注。场景理解可以分为几个子任务&…

C++ 内联函数 auto关键字

内联函数 用inline修饰的函数会成为内联函数&#xff0c;内联函数会在编译的阶段在调用函数的位置进行展开&#xff0c;不会涉及建立栈帧以提高效率&#xff0c;同时每一次的函数调用都会展开整个函数导致内存消耗的增加&#xff0c;是以空间换时间&#xff0c;所以内联函数比…

SpringSecurity入门(二)

8、获取用户认证信息 三种策略模式&#xff0c;调整通过修改VM options // 如果没有设置自定义的策略&#xff0c;就采用MODE_THREADLOCAL模式 public static final String MODE_THREADLOCAL "MODE_THREADLOCAL"; // 采用InheritableThreadLocal&#xff0c;它是Th…

最新下载:Navicat for MySQL 11软件安装视频教程

软件简介&#xff1a; Navicat for MySQL 是一款强大的 MySQL 数据库管理和开发工具&#xff0c;它为专业开发者提供了一套强大的足够尖端的工具&#xff0c;但对于新用户仍然易于学习。Navicat For Mysql中文网站&#xff1a;http://www.formysql.com/ Navicat for MySQL 基于…