算法导论实战(六)(算法导论习题三十四、三十五章)

🌈 个人主页:十二月的猫-CSDN博客
🔥 系列专栏: 🏀算法启示录

💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 

前言

算法导论的知识点学习将持续性更新在算法启示录_十二月的猫的博客-CSDN博客,欢迎大家订阅呀(反正是免费的哦~~)

实战篇也将在专栏上持续更新,主要目的是强化对理论的学习(题目来源:山东大学孔凡玉老师推荐)

目录

前言

第三十四章

34.1-4

34.5-1

34.5-5

第三十五章

35.1-4

35.2-3

总结


第三十四章

34.1-4

问题描述:

练习 16. 2-2 中曾要求读者给出的 0-1 背包问题的“动态规划算法“,它是一个多项式时间的算法吗?解释你的答案。

问题分析:

首先回忆:0-1背包问题的动态规划算法是什么?

0-1背包动态规划算法:

0-1bag(w,v,n,m) //n表示物品数量,m表示背包最大重量let d(i,j) be a Two-dimensional arraysfor i=0 to nd(i,0)=0for j=1 to md(0,j)=0for i =1 to nfor j=1 to mif(j>w(i))d(i,j)=max(d(i-1,j),d(i-1,j-w(i))+v(i))elsed(i,j)=d(i-1,j)

分析算法我们不难知道算法的时间复杂度为O(nm),其中n为物品最大数量,m为背包重量上限 


问题本质就是让我们思考O(nm)这个时间复杂度是不是多项式时间的

时间复杂度分为:编码时间复杂度、非编码时间复杂度

很多算法在非编码情况下时间复杂度为多项式时间的,但是在编码下就是非多项式时间 

编码时间复杂度更贴和计算机实际运行的情况 

问题求解:

这不是一个多项式时间的算法。考虑问题的编码。通过给出每个物品的索引、价值和重量的二进制表示,可以进行多项式编码,这些被表示为长度为a = Ω(n)的二进制字符串(每个物品独立需要一串编码,不能用两个位表示四个物品)。我们在多项式时间内对W进行编码,这将有长度为Θ(log W) 的编码(能用两位表示四个重量)。这个长度为a + b的问题的解的时间为Θ(nW) = Θ(a · 2^b)。因此,该算法实际上是指数级的。

注:本题实际上是问算法实际运行的时间复杂度

34.5-1

问题描述:

子图同构问题取两个无向图 G1、G2, 要回答 G1 是否与 G2 的一个子图同构这一问题。 证明:子图同构问题是 NP 完全的。(本题就是证明子图同构问题是NP完全问题

问题分析:

证明L问题是NP完全问题的步骤:

  1. 证明L∈NP
  2. 选取一个已知的NP完全问题L’
  3. 描述一个归约函数f(x)能够把L‘归约到L
  4. 证明归约函数f的归约是多项式时间的
  5. 当且仅当L‘有解时L有解

总的思路:假设L’有解将每个实例归约成L,此时L也有解;但是L‘是NPC问题,所以L也是NPC问题无解

问题求解:

1、假如我们得到了G1、G2以及其对应的解——G2的子图G2‘与G1同构。此时我们只需要遍历G2’中的点和每一个与点相连的边,同时检查G1中是够有对应的点即可验证。这个验证的时间复杂度是O(EV)(其中E为G2‘的边集,V为G1的点集),所以是多项式时间。但是假如不知道G2哪个子图与G1同构,要去寻找的话,由于G2的子图有2^n个,所以寻找的时间显然不是多项式时间

2、选择团问题作为已知的NPC问题,接下去思考如何把团问题归约到子图同构问题上

3、假如现在我们有一个有解团问题<G,k>,即G中存在一个k规模的团(即有k个点的完全子图),记这个完全子图为Gk。此时我们构造一个G2,令G2是和Gk一样规模的完全子图。那么我们将G和G2放到子图同构中不难证明,G一定有子图Gk与G2同构

4、假如G有子图Gk与G2同构,那么至少G中会存在规模为k的团,即L语言在NPC问题L’中一定有对应的解。同时团问题有解时由3可知子图同构问题也一定有解。所以当且仅当关系证明完毕!

5、由于归约算法中,我们仅仅构造一个规模为k的完全图G2,所以这个归约算法是多项式时间内可以完成的

34.5-5

问题描述:

给定一个整数集合S,求集合S的一个划分S1和S2(即:S=S1∪S2且S1∩S2=Φ),使得S1中的元素之和等于S2中的元素之和(本题就是证明集合划分问题是NPC问题)

问题分析:

证明L问题是NP完全问题的步骤:

  1. 证明L∈NP
  2. 选取一个已知的NP完全问题L’
  3. 描述一个归约函数f(x)能够把L‘归约到L
  4. 证明归约函数f的归约是多项式时间的
  5. 当且仅当L‘有解时L有解

总的思路:假设L’有解将每个实例归约成L,此时L也有解;但是L‘是NPC问题,所以L也是NPC问题无解

问题求解:

1、假如给定一个集合S的划分S1和S2,那么分别对S1和S2的元素求和并比较,因此可以在多项式时间验证这个集合划分的正确性。同时如果并没有给这个S的划分,那么S1和S2的划分个数都有2^n个,所以寻找S1、S2算法的时间复杂度肯定不是多项式时间的

2、选择子集和求和问题作为已知NPC问题

3、假如存在一个集合U,已知其中的元素xi、xj,....,等之和为t,t为提前已经设定好的量。那么我们取这个集合U,令U’=U 并 {U-2t},此时U‘中就存在几个可拆分的集合对象。这时,可以确定新集合U‘中的集合元素可以拆分为两个U-t。因为只要将集合{U-2t}中的t挪动到U中即可。而t已知为xi、xj,....,等元素的和,所以是可以挪动的。证毕!

4、归约算法仅仅涉及有限集合的并以及拆操作,所以整体的归约时间必然是多项式的

5、当新集合U'中元素可以拆分为两个相等的元素时,我们可以令这两个相等元素为U-t。那么重新拆分组合这两个元素,可以得到集合U,并且其中有元素求和为t。也就是说此时集合U的子集和问题必然存在解。

第三十五章

35.1-4

问题描述:

给出一个有效的贪心算法,使其能够在线性时间内找出一棵树的最优顶点覆盖。

问题分析:

已知顶点覆盖算法是NPC难度的,题目要我们找可行的线性时间算法,本质就是让我们去使用近似算法找最优顶点覆盖

 所谓贪心算法实现就是算法导论中的方法

问题求解:

APPROX-VERTEX-COVER(G)C=ØE'=G.Ewhile(E'!=Ø)let (u,v) be a arbitrary edge of E'C=C ∪ (u,v)remove from E' every edge incident on either u or vreturn C

 该算法是一个多项式时间的2近似算法

问题深究: 

下面给出证明,说明为什么这个算法是多项式时间的2近似算法

 证:

定义C:为算法实际找出的顶点覆盖;C*:为图G最优顶点覆盖;A为算法找出的边的集合

由于每找到一个边(u,v)则把与u或v连接的边删除,所以A集合中没有两个边存在共同的顶点,即所有边都是不相连的。因此,想要覆盖这些边至少需要边个数的顶点,即有:

\left | C^* \right |>=\left | A \right |

由由于A的边并不相交,所以并不存在一个点连接两个边的情况,每个边的两个端点都是不相同的。因此有:

\left | C \right |=2\left | A \right | 

结合上面两个式子,我们可以得到:

 \left | C \right |=2\left | A \right |<=2\left | C^* \right |

即该算法是多项式时间上的2近似算法 

35.2-3

问题描述:

考虑下述用于构造近似旅行商旅行路线(代价函数满足三角不等式)的最近点启发式:从只包含任意选择的某一顶点的平凡回路开始,在每一步中,找出一个顶点 u, 它不在回路中,但到回路上任何顶点之间的距离最短。假设回路上距离u最近的顶点为 v, 则将u插入到v之后,从而对回路加以扩展。重复这一过程,直到所有顶点都在回路上为止。 证明:这一启发式方法返回的旅行路线总代价不超过最优旅行路线代价的2倍。

 问题分析:

 证明近似算法与最优算法代价的近似比:

1、确定近似算法产生的结果;

2、确定最优算法产生的结果;

3、找到两者中间的联系桥点

4、通过桥点来判断近似算法和最优算法的近似比

问题求解: 

按照这个思路来求解近似算法的近似比 :

1、确定近似算法产生的结果:每次选择一个点,将点插入到原本的回路中间,从而完成回路的拓展

2、最优算法产生回路的方式:回忆通过最小生成树来确定旅行路线的方法,可以知道生成最优旅行路线我们是每次选择一个点然后将该点加入已知回路(注意是加入不是插入

3、 顶点覆盖近似算法每次找的是边,所以中点桥点就是|A|;旅行商问题的最小生成树近似算法依靠生成树来解决问题,所以中间桥点就是c(T),即生成树的权值和。本题不需要一个特定的桥点,因为近似结果和最优结果内部就存在桥点可以利用

4、假设回路中已经存在vi,vi+1,现在想要插入ui。利用近似算法每次插入一个点,新增的值:

c(u_i,v_i)+c(u_i,v_{i+1})-c(v_i,v_{i+1})

根据三角形理论可以知道下面不等式:

 c(u_i,v_{i+1})<=c(u_i,v_{i})+c(v_i,v_{i+1})

将第二个不等式代入第一个式子中有:

 c(u_i,v_i)+c(u_i,v_{i+1})-c(v_i,v_{i+1})<=2c(u_i,v_{i})

 而最优结果每次加入点新增的值为(因为已知ui到vi的距离是最短的):

c(u_i,v_i)

 因此可以证明,每次新增的值近似算法是最优算法新增值的两倍,所以从总的代价上看,近似算法最终耗费也是最优算法最终耗费的两倍。证毕!

总结

本文到这里就结束啦~~

本篇文章的撰写花了本喵三个多小时

如果仍有不够,希望大家多多包涵~~

如果觉得对你有帮助,辛苦友友点个赞哦~

知识来源:《算法导论》课后习题、山东大学孔凡玉老师ppt。不要用于商业用途转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/850924.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第十四周 6.4 内部类部分知识点

一、理解 1.定义在一个类内部的类称为内部类 2.语法: class 类名{ class 类名{} } 3.内部类编译之后生成独立的.class文件&#xff0c;文件命名为:外部类类名$内部类的类名.class 4.内部类分类:成员内部类、静…

初阶 《函数》 2.C语言中函数的分类

2.C语言中函数的分类 1.库函数 2.自定义函数 2.1 库函数 为什么会有库函数&#xff1f; 1.我们知道在我们学习C语言编程的时候&#xff0c;总是在一个代码编写完成之后迫不及待的想知道结果&#xff0c;想把这个结果打印到我们的屏幕上看看。这个时候我们会频繁的使用一个功能…

Nginx04-Nginx代理、反向代理实验、LNMP流程详解与排错思路

目录 写在前面Nginx04LNMP流程详解Nginx处理静态资源流程Nginx处理动态资源流程 LNMP排错LinuxNginxPHPMysql Nginx 代理概述正向代理反向代理区别 反向代理实验&#xff08;Proxy模块&#xff09;环境准备front配置lb01配置测试流程梳理总结 写在前面 这是Nginx第四篇&#xf…

【Linux】 安装rz 和sz

在 Linux 系统中&#xff0c;rz 和 sz 是两个用于在本地计算机与远程计算机之间安全传输文件的命令行工具。它们是 lrzsz 包的一部分&#xff0c;通常用于通过 SSH 连接传输文件。 打开终端&#xff1a; 首先&#xff0c;打开你的 CentOS 机器上的终端。 执行sz 提示下面信息…

王学岗鸿蒙开发(北向)——————(七、八)ArkUi的各种装饰器

arts包含如下&#xff1a;1&#xff0c;装饰器 &#xff1b;2&#xff0c;组件的描述(build函数)&#xff1b;3&#xff0c;自定义组件(Component修饰的),是可复用的单元&#xff1b;4&#xff0c;系统的组件(鸿蒙官方提供)&#xff1b;等 装饰器的作用:装饰类、变量、方法、结…

操作系统入门系列-MIT6.828(操作系统工程)学习笔记(五)---- 操作系统的组织结构(OS design)

系列文章目录 操作系统入门系列-MIT6.S081&#xff08;操作系统&#xff09;学习笔记&#xff08;一&#xff09;---- 操作系统介绍与接口示例 操作系统入门系列-MIT6.828&#xff08;操作系统工程&#xff09;学习笔记&#xff08;二&#xff09;----课程实验环境搭建&#x…

【机器人和人工智能——自主巡航赛项】进阶篇

文章目录 案例要求创建地图rviz仿真 保存地图坐标点定位识别训练主逻辑理解语音播报模块匹配二维码识别多点导航讲解视频其余篇章 案例要求 创建地图 ./1-gmapping.sh 把多个launch文件融合在sh文件里面 rviz仿真 rviz是rose集成的可视化界面&#xff0c;查看机器人的各项数…

CPP初级:模板的运用!

目录 一.泛型编程 二.函数模板 1.函数模板概念 2.函数模板格式 3.函数模板的原理 三.函数模板的实例化 1.隐式实例化 2.显式实例化 3.模板参数的匹配原则 四.类模板 1.类模板的定义格式 2.类模板的实例化 一.泛型编程 泛型编程&#xff1a;编写与类型无关的通用代码…

vs2019 c++20规范 全局函数 ref 及模板类 reference_wrapper<_Ty> 的源码分析

这是个引用&#xff0c;可以包裹一个对象&#xff0c;相当于引用该对象&#xff0c;而不是在作为函数形参时产生值传递。因为模板 reference_wrapper<_Ty> 其实是封装了该对象的地址。下面以图示形式给出其重要的成员函数。模板其实都差不多&#xff0c;跟人也一样&#…

Linux | buildrootfs 添加mkfs.ext3/mkfs.ext4 支持

因个人需要&#xff0c;mkfs.ext3 但是项目中还没有这个命令 所以琢磨了半天 这里将其小记一下 在buildrootfsz中&#xff0c;需要将e2fsprogs 勾选上然后重新编译就好了 make menuconfig Target packages-> Filesystem and flash utilities-> e2fsprogs

JVMの静、动态绑定异常捕获JIT即时编译

在说明静态绑定和动态绑定之前&#xff0c;我们首先要了解在字节码指令的层面&#xff0c;JVM是如何调用方法的&#xff1a; 例如我有以下的代码&#xff0c;很简单就是在main方法中调用了另一个静态方法&#xff1a; public class MethodTest {public static void main(Strin…

论文阅读——MIRNet

项目地址&#xff1a; GitHub - swz30/MIRNet: [ECCV 2020] Learning Enriched Features for Real Image Restoration and Enhancement. SOTA results for image denoising, super-resolution, and image enhancement.GitHub - soumik12345/MIRNet: Tensorflow implementation…

数据库(29)——子查询

概念 SQL语句中嵌套SELECT语句&#xff0c;称为嵌套查询&#xff0c;又称子查询。 SELECT * FROM t1 WHERE column1 (SELECT column1 FROM t2); 子查询外部语句可以是INSERT/UPDATE/DELETE/SELECT的任何一个。 标量子查询 子查询返回的结果是单个值&#xff08;数字&#xff…

电子设计入门教程硬件篇之集成电路IC(二)

前言&#xff1a;本文为手把手教学的电子设计入门教程硬件类的博客&#xff0c;该博客侧重针对电子设计中的硬件电路进行介绍。本篇博客将根据电子设计实战中的情况去详细讲解集成电路IC&#xff0c;这些集成电路IC包括&#xff1a;逻辑门芯片、运算放大器与电子零件。电子设计…

31、matlab卷积运算:卷积运算、二维卷积、N维卷积

1、conv 卷积和多项式乘法 语法 语法1&#xff1a;w conv(u,v) 返回向量 u 和 v 的卷积。 语法2&#xff1a;w conv(u,v,shape) 返回如 shape 指定的卷积的分段。 参数 u,v — 输入向量 shape — 卷积的分段 full (默认) | same | valid full&#xff1a;全卷积 ‘same…

UnityXR Interaction Toolkit 如何使用XRHand手部识别

前言 Unity的XR Interaction Toolkit是一个强大的框架,允许开发者快速构建沉浸式的VR和AR体验。随着虚拟现实技术的发展,手部追踪成为了提升用户交互体验的关键技术之一。 本文将介绍如何在Unity中使用XR Interaction Toolkit实现手部识别功能。 准备工作 在开始之前,请…

统信UOS1070上配置文件管理器默认属性01

原文链接&#xff1a;统信UOS 1070上配置文件管理器默认属性01 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇关于在统信UOS 1070上配置文件管理器默认属性的文章。文件管理器是我们日常操作系统使用中非常重要的工具&#xff0c;了解如何配置其默认属性可以极大地…

apache poi 插入“下一页分节符”并设置下一节纸张横向的一种方法

一、需求描述 我们知道&#xff0c;有时在word中需要同时存在不同的节&#xff0c;部分页面需要竖向、部分页面需要横向。本文就是用java调用apache poi来实现用代码生成上述效果。下图是本文实现的效果&#xff0c;供各位看官查阅&#xff0c;本文以一篇课文为例&#xff0c;…

Linux系统推出VB6开发IDE了?Gambas,Linux脚本编写

第一个Linux程序&#xff0c;加法计算加弹窗对话框,Gambas,linux版的类似VB6的IDE开发环境 一开始想用VB6的Clng函数转成整数&#xff0c;没这函数。 输入3个字母才有智能提示&#xff0c;这点没做好 没有msgbox函数&#xff0c;要用messagebox.warning 如果可以添加函数别名就…

[书生·浦语大模型实战营]——第六节 Lagent AgentLego 智能体应用搭建

1. 概述和前期准备 1.1 Lagent是什么 Lagent 是一个轻量级开源智能体框架&#xff0c;旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。 Lagent 目前已经支持了包括 AutoGPT、ReAct 等在内的多个经典智能体范式&#x…