Python | C++ | MATLAB | Julia | R 市场流动性数学预期评估量

🎯要点

🎯市场流动性策略代码应用:🎯动量策略:滚动窗口均值策略、简单移动平均线策略、指数加权移动平均线策略、相对强弱指数、移动平均线收敛散度交叉策略、三重指数平均策略、威廉姆斯 %R 策略 | 🎯均值回归策略:布林线交易策略、配对交易策略 | 🎯基于数学模型的策略:通过每月交易最小化投资组合波动策略、每月交易的最大夏普比率策略 | 🎯基于时间序列预测的策略:具有外生回归量的季节性自回归综合移动平均线、先知策略 | 🎯市场流动性差价数学评估。

🎯个人现金流建模预期市场投资模式。

🎯风险获利数学模型:Python流动性做市风险获利 | 信息不对称买卖数学模型 | 🎯市场机制分析:Python牛市熊市横盘机制 | 缺口分析 | 头寸调整算法 | 🎯资产评估:Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分 | 🎯金融数学代码:C++和Python计算金融数学方程算法模型

🍇Python季节性和外部因素计算模型

时间序列数据中的季节性是指在一段时间内以固定间隔出现的重复且可预测的模式。这些模式可以以各种形式表现出来,例如每日、每周、每月或每年的周期,并且通常受天气、假期或经济季节等外部因素的影响。季节性的存在意味着数据在特定时间范围内重复出现系统性变化。了解季节性对于准确预测至关重要,因为它有助于捕捉数据的周期性。分析师使用各种统计技术来检测和建模季节性,从而使他们能够做出更明智的决策和预测。季节性分解、傅里叶分析和自相关函数是用于分析和解决时间序列数据中季节性的常用工具。通过确认和整合这些重复模式,预测模型可以更好地捕捉数据的固有结构并提供更可靠的预测。

处理时间序列数据中的季节性涉及建模和整合定期观察到的重复模式。假设您有冰淇淋销售的每日数据,并且您注意到一种季节性模式,即夏季销售额趋于增加,冬季销售额趋于减少。要处理这种季节性,您可以按照以下步骤使用此模型:

💦差分(积分):

季节性模式会使数据变得不平稳。如果需要,可以应用差分使序列平稳。这可能涉及取一阶差分或应用季节性差分,具体取决于数据的特征。季节性差分通常用于使时间序列平稳。差分参数表示为 d(表示季节性差分)。差分涉及从其滞后版本中减去时间序列。第 d 次差分可以表示为:
Y t ′ = Y t − Y t − d Y_t^{\prime}=Y_t-Y_t-d Yt=YtYtd
这里, Y t ′ Y_t^{\prime} Yt是差分序列,是季节周期。

💦识别季节性因素

通过纳入季节性自回归 (SAR) 和季节性移动平均 (SMA) 项来建模季节性差异。这些项捕捉特定时间间隔(季节)内数据中的重复模式。为了识别时间序列的季节性成分,我们可以使用各种分解技术。一种常见的方法是使用 LOESS (STL) 进行季节性趋势分解。这有助于识别趋势、季节性和残差成分。这些成分可以帮助识别定期重复出现的模式,从而更好地理解模型。

计算移动平均线以捕捉趋势。我们可以使用简单的移动平均线或指数平滑等其他技术。在这里,我们使用移动平均线。

移动平均值是通过取指定周期数(本例中为 m)内的值的平均值来计算的。
S M A ( t ) = ( Y t − k + 1 + … + Y t ) / k S M A(t)=\left(Y_{t-k+1}+\ldots+Y_t\right) / k SMA(t)=(Ytk+1++Yt)/k
其中, Y t Y_t Yt 是时间 t 的值, k k k 是移动平均线的周期数。

它对于消除短期波动和突出数据的整体方向特别有用。从原始时间序列中减去移动平均线以获得去趋势序列。
去趋势序列  = y t − 移动平均线  \text { 去趋势序列 }=y_t-\text { 移动平均线 }  去趋势序列 =yt 移动平均线 

其中,n 是季节数。

n 的选择取决于数据季节性的周期性。例如,如果您观察每年的季节性,则每月数据的 n 将设置为 12。残差表示考虑了趋势和季节性成分后时间序列中的剩余变化。
残差  = 去趋势序列季节分量  \text { 残差 }=\text { 去趋势序列季节分量 }  残差 = 去趋势序列季节分量 
它有助于定义时间序列数据中无法解释的变化或噪声残差对于模型诊断和验证非常重要。一个好的预测模型应该具有随机的残差,并且没有明显的模式。如果残差中存在模式,则表明该模型可能需要进一步细化。

综上所述,模型可表示为:
Θ ( L ) p θ ( L s ) P Δ d Δ s D y t = Φ ( L ) q ϕ ( L s ) Q Δ d Δ s D ϵ t + ∑ i = 1 n β i x t i \Theta(L)^p \theta\left(L^s\right)^P \Delta^d \Delta_s^D y_t=\Phi(L)^q \phi\left(L^s\right)^Q \Delta^d \Delta_s^D \epsilon_t+\sum_{i=1}^n \beta_i x_t^i Θ(L)pθ(Ls)PΔdΔsDyt=Φ(L)qϕ(Ls)QΔdΔsDϵt+i=1nβixti
Θ ( L ) ν θ ( L s ) P Δ d Δ s D y t \Theta(L)^\nu \theta\left(L^s\right)^P \Delta^d \Delta_s^D y_t Θ(L)νθ(Ls)PΔdΔsDyt:表示因变量,表示为 y t y_{t} yt​,它可能是一个时间序列变量。

Θ ( L ) p θ ( L s ) P \Theta(L)^p \theta\left(L^s\right)^P Θ(L)pθ(Ls)P:分别涉及自回归 (AR) 和季节性自回归分量。 Δ d Δ s D \Delta^d \Delta_s^D ΔdΔsD 表示差分,通常用于实现时间序列数据的平稳性。 ϵ t \epsilon_t ϵt 表示模型的误差项。 ∑ i = 1 n β i x t i \sum_{i=1}^n \beta_i x_t^i i=1nβixti 包括 (n) 个外生变量 x t i x_t^i xti 与相应的系数 β i \beta_i βi

💦Python实现模型:

from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
%matplotlib inline
from matplotlib.pylab import rcParamsfrom statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
df = pd.read_csv("https://raw.githubusercontent.com/AirP.csv")

将“月”列转换为日期时间格式并将其设置为 DataFrame 的索引。

df['Month'] = pd.to_datetime(df['Month'], infer_datetime_format=True)
df = df.set_index(['Month'])

差分

df['#Passengers_diff'] = df['#Passengers'].diff(periods=12)
df.info()

输出:

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 144 entries, 1949-01-01 to 1960-12-01
Data columns (total 2 columns):#   Column            Non-Null Count  Dtype  
---  ------            --------------  -----  0   #Passengers       144 non-null    int64  1   #Passengers_diff  132 non-null    float64
dtypes: float64(1), int64(1)
memory usage: 3.4 KB

差分涉及从时间序列本身减去滞后版本。在季节差异的情况下,您可以从上一年的同一季节中减去该值。

当您采用第一个季节差异时,您会丢失前 12 个数据点(因为没有前一年前 12 个月的数据)。这会导致生成的差分序列中出现缺失值。

df['#Passengers_diff'].fillna(method='backfill', inplace=True)
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 144 entries, 1949-01-01 to 1960-12-01
Data columns (total 2 columns):#   Column            Non-Null Count  Dtype  
---  ------            --------------  -----  0   #Passengers       144 non-null    int64  1   #Passengers_diff  144 non-null    float64
dtypes: float64(1), int64(1)
memory usage: 3.4 KB

识别季节性因素

result = seasonal_decompose(df['#Passengers'], model='multiplicative', period=12)
trend = result.trend.dropna()
seasonal = result.seasonal.dropna()
residual = result.resid.dropna()plt.figure(figsize=(6,6))plt.subplot(4, 1, 1)
plt.plot(df['#Passengers'], label='Original Series')
plt.legend()plt.subplot(4, 1, 2)
plt.plot(trend, label='Trend')
plt.legend()plt.subplot(4, 1, 3)
plt.plot(seasonal, label='Seasonal')
plt.legend()plt.subplot(4, 1, 4)
plt.plot(residual, label='Residuals')
plt.legend()plt.tight_layout()
plt.show()

外生变量

df['month_index'] = df.index.month

模型拟合

SARIMAX_model = pm.auto_arima(df[['#Passengers']], exogenous=df[['month_index']],start_p=1, start_q=1,test='adf',max_p=3, max_q=3, m=12,start_P=0, seasonal=True,d=None, D=1,trace=False,error_action='ignore',suppress_warnings=True,stepwise=True)

模型预测函数

def sarimax_forecast(SARIMAX_model, periods=24):# Forecastn_periods = periodsforecast_df = pd.DataFrame({"month_index": pd.date_range(df.index[-1], periods=n_periods, freq='MS').month},index=pd.date_range(df.index[-1] + pd.DateOffset(months=1), periods=n_periods, freq='MS'))fitted, confint = SARIMAX_model.predict(n_periods=n_periods,return_conf_int=True,exogenous=forecast_df[['month_index']])index_of_fc = pd.date_range(df.index[-1] + pd.DateOffset(months=1), periods=n_periods, freq='MS')# make series for plotting purposefitted_series = pd.Series(fitted, index=index_of_fc)lower_series = pd.Series(confint[:, 0], index=index_of_fc)upper_series = pd.Series(confint[:, 1], index=index_of_fc)# Plotplt.figure(figsize=(15, 7))plt.plot(df["#Passengers"], color='#1f76b4')plt.plot(fitted_series, color='darkgreen')plt.fill_between(lower_series.index,lower_series,upper_series,color='k', alpha=.15)plt.title("SARIMAX - Forecast of Airline Passengers")plt.show()
sarimax_forecast(SARIMAX_model, periods=24)

其中,绘图阴影区域表示预测值周围的置信区间。

👉参阅一:计算思维

👉参阅二:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/850659.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LLVM Cpu0 新后端7 第二部分 窥孔优化

想好好熟悉一下llvm开发一个新后端都要干什么&#xff0c;于是参考了老师的系列文章&#xff1a; LLVM 后端实践笔记 代码在这里&#xff08;还没来得及准备&#xff0c;先用网盘暂存一下&#xff09;&#xff1a; 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…

170.二叉树:平衡二叉树(力扣)

代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr, right(nullptr) {}* Tree…

第103天: 权限提升-Linux 系统辅助项目脏牛Dirty内核漏洞SUIDGUID

项目下载地址 综合类探针&#xff1a; https://github.com/liamg/traitor 自动化提权&#xff1a; https://github.com/AlessandroZ/BeRoot 信息收集&#xff1a; https://github.com/rebootuser/LinEnum https://github.com/sleventyeleven/linuxprivchecker 漏洞探针&#xf…

Webpack前端打包工具详解

目录 Webpack前端打包工具详解一、Webpack 的作用二、Webpack 的安装和基本使用1. 安装 Webpack2. 创建 Webpack 配置文件3. 运行 Webpack 三、Webpack 核心概念1. 入口&#xff08;Entry&#xff09;2. 输出&#xff08;Output&#xff09;3. 加载器&#xff08;Loaders&#…

【wiki知识库】06.文档管理页面的添加--前端Vue部分

&#x1f4dd;个人主页&#xff1a;哈__ 期待您的关注 目录 一、&#x1f525;今日目标 二、&#x1f43b;前端Vue模块的改造 BUG修改 1.wangeditor无法展示问题 2.弹窗无法正常关闭问题 2.1 添加admin-doc.vue 2.1.1 点击admin-ebook中的路由跳转到admin-doc 2.2.2 进入…

Rust-06-所有权

所有权&#xff08;系统&#xff09;是 Rust 最为与众不同的特性&#xff0c;它让 Rust 无需垃圾回收即可保障内存安全&#xff0c;下面是所有权以及相关功能&#xff1a;借用&#xff08;borrowing&#xff09;、slice 以及 Rust 如何在内存中布局数据。 通过所有权系统管理内…

CSDN个人主页动态地图(前端/后端)

前段时间有人问我&#xff0c;关于CSDN个人主页动态地图的实现&#xff0c;我来解答一下。 这里要注意一下&#xff1a;使用CSDN的API需要遵循其开发者协议和使用规范&#xff0c;确保你的使用方式符合相关规定 前端部分&#xff1a; 创建一个HTML页面作为个人主页。在页面上放…

TCP/IP协议分析实验:通过一次下载任务抓包分析

TCP/IP协议分析 一、实验简介 本实验主要讲解TCP/IP协议的应用&#xff0c;通过一次下载任务&#xff0c;抓取TCP/IP数据报文&#xff0c;对TCP连接和断开的过程进行分析&#xff0c;查看TCP“三次握手”和“四次挥手”的数据报文&#xff0c;并对其进行简单的分析。 二、实…

Prompt实现简单英语单词教学

model: gpt-3.5-turbo Bot: 用于执行翻译任务 OutPutDefend: 用于判断任务输出结果是否完整 具体实现及Prompt Bot 模型配置 使用 gpt-3.5-turbo 便可完成任务 考虑到该任务是生成文本的任务&#xff0c;因此将temperature设置为了0.7 Prompt 将任务描述&#xff0c;输出…

数据结构:旋转数组

方法1 &#xff08;三次逆置法&#xff09;&#xff1a; void reverse(int* nums, int start, int end) {while (start < end) {int temp nums[start];nums[start] nums[end];nums[end] temp;start;end--;} }void rotate(int* nums, int numsSize, int k) {k k % numsS…

大模型常用推理参数工作原理

&#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&#xff0c;为生民立命&#xff0c;为往圣继绝学&#xff0c;为万世开太平。 do_sample do_sample 参数控制是否使用采样…

Spring Security 应用详解

一、 集成SpringBoot 1.1 Spring Boot 介绍 Spring Boot 是一套 Spring 的快速开发框架&#xff0c;基于 Spring 4.0 设计&#xff0c;使用 Spring Boot 开发可以避免一些繁琐的工程 搭建和配置&#xff0c;同时它集成了大量的常用框架&#xff0c;快速导入依赖包&#xff0…

【C++11】多线程常用知识

知识体系 thread C++ thread中最常用的两个函数是join和detach,怎么选择呢,简单来说,如果希望等待线程结束,用join,如果希望异步执行,且不等待执行结果,那么就用detach;thread_local可以简单理解为一个线程级别的全局变量;线程id在调试多线程程序时是非常有用的东西;…

【学习笔记】Linux文件编译调试相关(问题未解决)

//-I意为include 指定头文件搜索路径 -l&#xff1a;告诉编译器链接时需要的库 gcc *.c -I /usr/include/fastdfs/ -I /usr/include/fastcommon/ -l fdfsclient//调试gcc -g -rdynamic main.c如何解决 “ 段错误(吐核) ” &#xff1f;&#xff1f;&#xff1f; 【线上排错】记…

c语言基础篇A

A1.程序和程序设计语言 程序 程序算法数据结构程序设计方法语言工具和环境数据结构:数据的类型和数据的组织形式算法&#xff1a;对数据操作的方法和步骤 程序设计语言的种类 第一代语言&#xff1a;机器语言第二代语言&#xff1a;汇编语言第三代语言&#xff1a;高级语言…

coap:使用californium建立coap server和client的简单示例

【pom.xml】 <dependency><groupId>org.eclipse.californium</groupId><artifactId>californium-core</artifactId><version>2.0.0-M7</version> </dependency> <dependency><groupId>org.eclipse.californium&l…

zabbix-agent,zabbix_agentd和zabbix-agent2,zabbix_agent2的区别

所以带横杠- 的是应用程序名&#xff0c;比如zabbix-server和zabbix-agent 带下划线_ 的是应用程序所对应的进程名&#xff0c;zabbix_server和zabbix_agentd 从zabbix5版本开始&#xff0c;应用程序zabbix-agent分为zabbix-agent和zabbix-agent2&#xff0c;zabbix-agent2是…

【第13章】SpringBoot实战篇之项目部署

文章目录 前言一、准备1. 引入插件2. 打包3. 启动4. 后台启动 二、跳过测试模块三、外置配置文件1.引入插件2.忽略配置文件3. 外置配置文件 总结 前言 项目部署需要把项目部署到Linux服务器上&#xff0c;SpringBoot项目通过Maven打包即可快速生成可运行Jar包程序。 一、准备 …

Comfyui容器化部署与简介

目前使用 Stable Diffusion 进行创作的工具主要有两个&#xff1a;Stable Diffusion WebUI 和 ComfyUI。本文重点介绍ComfyUI的部署使用。 ComfyUI 可定制性很强&#xff0c;可以让创作者搞出各种新奇的玩意&#xff0c;通过工作流的方式&#xff0c;也可以实现更高的自动化水平…

Kimichat使用案例010:快速识别出图片中的表格保存到Excel

文章目录 一、介绍二、图片信息三、输入内容四、输出内容五、markdown提示词六、markdown输出一、介绍 如果有一张图片格式的表格,想要快速复制到Excel表格中,那么一般要借助于OCR工具。之前试过不少在线OCR工具,识别效果差强人意。其实,kimichat就可以非常好的完成这个任务…