Rust-06-所有权

所有权(系统)是 Rust 最为与众不同的特性,它让 Rust 无需垃圾回收即可保障内存安全,下面是所有权以及相关功能:借用(borrowing)、slice 以及 Rust 如何在内存中布局数据。
通过所有权系统管理内存,编译器在编译时会根据一系列的规则进行检查。如果违反了任何这些规则,程序都不能编译。在运行时,所有权系统的任何功能都不会减慢程序。

所有权

所有权规则

  1. Rust 中的每一个值都有一个 所有者(变量)。
  2. 值在任一时刻有且只有一个所有者。
  3. 当所有者(变量)离开作用域,这个值将被丢弃。
fn main() {{ // s 在这里无效,因为还没有声名let s = "hello world!";// 使用变量s} // 作用域结束,s 不再有效}

当 s 离开作用域的时候。当变量离开作用域,Rust 为我们调用一个特殊的函数。这个函数叫做 drop ,在这里 String 的
作者可以放置释放内存的代码。Rust 在结尾的 } 处自动调用 drop

变量与数据交互的方式(一):移动

    // 直接拷贝值let x = 10;let y = x;println!("{} {}", x,y);// 更改引用,不拷贝值let s1 = String::from("hello");let s2 = s1;println!("{s1} {s2}");

从string类型内存布局可以看出
在这里插入图片描述当我们将 s1 赋值给 s2 ,String 的数据被复制了,这意味着我们从栈上拷贝了它的指针、长度和容量。我们并没有复制指针指向的堆上数据。
在这里插入图片描述
如果直接拷贝堆上的数据,那么操作 s2 = s1 在堆上数据比较大的时候会对运行时性能造成非常大的影响。
过当变量离开作用域后,Rust 自动调用 drop 函数并清理变量的堆内存。不过上图展示了两个数据指针指向了同一位置。这就有了一个问题:当 s2 和 s1 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放(double free)的错误,也是之前提到过的内存安全性 bug 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。

如果使用以下代码

    let s1 = String::from("hello");let s2 = s1;println!("{s1}");

会产生如下错误,因为 Rust 禁止你使用无效的引用。

error[E0382]: borrow of moved value: `s1`--> src\main.rs:56:15|
54 |     let s1 = String::from("hello");|         -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
55 |     let s2 = s1;|              -- value moved here
56 |     println!("{s1}");|               ^^^^ value borrowed here after move|= note: this error originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)
help: consider cloning the value if the performance cost is acceptable|
55 |     let s2 = s1.clone();|                ++++++++

如果你在其他语言中听说过术语 浅拷贝(shallow copy)和 深拷贝(deep copy),那么拷贝指针、长度和容量而不拷贝数据可能听起来像浅拷贝。不过因为 Rust 同时使第一个变量无效了,这个操作被称为 移动(move),而不是叫做浅拷贝。上面的例子可以解读为 s1 被 移动 到了s2 中。
在这里插入图片描述
这样就解决了我们的问题!因为只有 s2 是有效的,当其离开作用域,它就释放自己的内存。另外,这里还隐含了一个设计选择:Rust 永远也不会自动创建数据的 “深拷贝”。因此,任何自动 的复制都可以被认为是对运行时性能影响较小的

变量与数据交互的方式(二):克隆

如果我们确实需要深度复制 String 中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做 clone 的通用函数。

    let s1 = String::from("hello");let s2 = s1.clone();println!("{s1} {s2}");

这里堆上的数据确实被复制了。

Rust 有一个叫做 Copy trait 的特殊注解可以用在类似整型这样的存储在栈上的类型上,如果一个类型实现了 Copy trait,那么一个旧的变量在将其赋值给其他变量后仍然可用。
以下是实现了 Copy trait的特殊类型,后续会谈到。
• 所有整数类型,比如 u32 。
• 布尔类型,bool ,它的值是 true 和 false 。
• 所有浮点数类型,比如 f64 。
• 字符类型,char 。
• 元组,当且仅当其包含的类型也都实现 Copy 的时候。比如,(i32, i32) 实现了 Copy ,但
(i32, String) 就没有。

所有权和函数

将值传递给函数与给变量赋值的原理相似。向函数传递值可能会移动或者复制,就像赋值语句一样。

fn main() {let s = String::from("hello"); // s 进入作用域takes_ownership(s); // s 的值移动到函数里 ...// ... 所以到这里不再有效let x = 5; // x 进入作用域makes_copy(x); // x 应该移动函数里,// 但 i32 是 Copy 的,// 所以在后面可继续使用 x
} // 这里,x 先移出了作用域,然后是 s。但因为 s 的值已被移走,// 没有特殊之处fn takes_ownership(some_string: String) { // some_string 进入作用域println!("{}", some_string);
} // 这里,some_string 移出作用域并调用 `drop` 方法。// 占用的内存被释放
fn makes_copy(some_integer: i32) { // some_integer 进入作用域println!("{}", some_integer);
} // 这里,some_integer 移出作用域。没有特殊之处

返回值与作用域

返回值也可以转移所有权。

fn main() {let s1 = gives_ownership(); // gives_ownership 将返回值// 转移给 s1let s2 = String::from("hello"); // s2 进入作用域let s3 = takes_and_gives_back(s2); // s2 被移动到// takes_and_gives_back 中,// 它也将返回值移给 s3
} // 这里,s3 移出作用域并被丢弃。s2 也移出作用域,但已被移走,// 所以什么也不会发生。s1 离开作用域并被丢弃
fn gives_ownership() -> String { // gives_ownership 会将返回值移动给调用它的函数let some_string = String::from("yours"); // some_string 进入作用域。some_string // 返回 some_string // 并移出给调用的函数
}
// takes_and_gives_back 将传入字符串并返回该值
fn takes_and_gives_back(a_string: String) -> String { // a_string 进入作用域a_string // 返回 a_string 并移出给调用的函数
}

变量的所有权总是遵循相同的模式:将值赋给另一个变量时移动它。当持有堆中数据值的变量离开作用域时,其值将通过 drop 被清理掉,除非数据被移动为另一个变量所有。

引用与借用

使用&符号
与使用 & 引用相反的操作是 解引用(dereferencing),它使用解引用运算符 *
引用像一个指针,因为它是一个地址,我们可以由此访问储存于该地址的属于其他变量的数据。 与指针不同,引用确保指向某个特定类型的有效值。下面是如何定义并使用一个(新的)calculate_length 函数,它以一个对象的引用作为参数而不是获取值的所有权:

    fn main() {let s1 = String::from("hello");// 传一个引用进去let len = calculate_length(&s1);println!("The length of '{}' is {}.", s1, len);}fn calculate_length(s: &String) -> usize {s.len()}

在这里插入图片描述
&s1 语法让我们创建一个指向值 s1 的引用,但是并不拥有它。因为并不拥有这个值,所以当引用停止使用时,它所指向的值也不会被丢弃。
我们将创建一个引用的行为称为 借用(borrowing)。正如现实生活中,如果一个人拥有某样东西,你可以从他那里借来。当你使用完毕,必须还回去。我们并不拥有它。正如变量默认是不可变的,引用也一样。(默认)不允许修改引用的值。
在这里插入图片描述

虽然是不可变的,但是编译器已经给出了解决办法,那就是和变量一样,使用mut,微调一下上面代码

fn main() {let mut s1 = String::from("hello");// 传一个引用进去change(&mut s1);println!("{s1}");}
fn change(s: &mut String) {s.push_str("hello");
}

可变引用有一个很大的限制:如果你有一个对该变量的可变引用,你就不能再创建对该变量的引用。这些尝试创建两个 s 的可变引用的代码会失败:

fn main() {let mut s1 = String::from("hello");let r1 = &mut s1;let r2 = &mut s1;println!("{r1} {r2}");
}

错误如下

error[E0499]: cannot borrow `s1` as mutable more than once at a time--> src\main.rs:63:14|
62 |     let r1 = &mut s1;|              ------- first mutable borrow occurs here
63 |     let r2 = &mut s1;|              ^^^^^^^ second mutable borrow occurs here
64 |
65 |     println!("{r1} {r2}");|               ---- first borrow later used here

第一个可变的借入在 r1 中,并且必须持续到在 println! 中使用它,但是在那个可变引用的创建和它的使用之间,我们又尝试在 r2 中创建另一个可变引用,该引用借用与 r1 相同的数据。主要是为了限制在同一时间对统一数据存在多个可变引用,避免了数据竞争。Rust 避免了这种情况的发生,因为它甚至不会编译存在数据竞争的代码!
数据竞争由三个行为造成:
• 两个或更多指针同时访问同一数据。
• 至少有一个指针被用来写入数据。
• 没有同步数据访问的机制。
修改一下使用之后再进行赋值可变引用:

    let mut s1 = String::from("hello");let r1 = &mut s1;println!("{r1}");let r2 = &mut s1;println!("{r2}");

它们的作用域没有重叠,所以代码是可以编译的。编译器可以在作用域结束之前判断不再使用的引用。

悬垂引用

在具有指针的语言中,很容易通过释放内存时保留指向它的指针而错误地生成一个 悬垂指针(dangling pointer),所谓悬垂指针是其指向的内存可能已经被分配给其它持有者。相比之下,在 Rust 中编译器确保引用永远也不会变成悬垂状态:当你拥有一些数据的引用,编译器确保数据不会在其引用之前离开作用域。

fn main() {let reference_to_nothing = dangle();
}
fn dangle() -> &String {  // dangle 返回一个字符串的引用let s = String::from("hello"); // s 是一个新字符串&s // 返回字符串 s 的引用
}  // 这里 s 离开作用域并被丢弃。其内存被释放。

因为 s 是在 dangle 函数内创建的,当 dangle 的代码执行完毕后,s 将被释放。不过我们尝试返回它的引用。这意味着这个引用会指向一个无效的 String ,Rust 不会允许我们这么做。

引用的规则

概括一下之前对引用的讨论:
• 在任意给定时间,要么 只能有一个可变引用,要么 只能有多个不可变引用。
• 引用必须总是有效的。

slice

slice 允许你引用集合中一段连续的元素序列,而不用引用整个集合。slice 是一类引用,所以它没有所有权。类似于切片

fn main() {let s = String::from("hello world");let hello = &s[0..5];let world = &s[6..11];}

在这里插入图片描述

字符串slice

知道了slice之后可以理解字符串了,这里 s 的类型是 &str :它是一个指向二进制程序特定位置的 slice。这也就是为什么字符串
字面值是不可变的;&str 是一个不可变引用。

let s = "Hello, world!";

其它类型slice

就跟我们想要获取字符串的一部分那样,我们也会想要引用数组的一部分。我们可以这样做:

let a = [1, 2, 3, 4, 5];
let slice = &a[1..3];
assert_eq!(slice, &[2, 3]);

这个 slice 的类型是 &[i32] 。它跟字符串 slice 的工作方式一样,通过存储第一个集合元素的引用和一个集合总长度。你可以对其他所有集合使用这类 slice。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/850653.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCP/IP协议分析实验:通过一次下载任务抓包分析

TCP/IP协议分析 一、实验简介 本实验主要讲解TCP/IP协议的应用,通过一次下载任务,抓取TCP/IP数据报文,对TCP连接和断开的过程进行分析,查看TCP“三次握手”和“四次挥手”的数据报文,并对其进行简单的分析。 二、实…

数据结构:旋转数组

方法1 &#xff08;三次逆置法&#xff09;&#xff1a; void reverse(int* nums, int start, int end) {while (start < end) {int temp nums[start];nums[start] nums[end];nums[end] temp;start;end--;} }void rotate(int* nums, int numsSize, int k) {k k % numsS…

大模型常用推理参数工作原理

&#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&#xff0c;为生民立命&#xff0c;为往圣继绝学&#xff0c;为万世开太平。 do_sample do_sample 参数控制是否使用采样…

Spring Security 应用详解

一、 集成SpringBoot 1.1 Spring Boot 介绍 Spring Boot 是一套 Spring 的快速开发框架&#xff0c;基于 Spring 4.0 设计&#xff0c;使用 Spring Boot 开发可以避免一些繁琐的工程 搭建和配置&#xff0c;同时它集成了大量的常用框架&#xff0c;快速导入依赖包&#xff0…

【C++11】多线程常用知识

知识体系 thread C++ thread中最常用的两个函数是join和detach,怎么选择呢,简单来说,如果希望等待线程结束,用join,如果希望异步执行,且不等待执行结果,那么就用detach;thread_local可以简单理解为一个线程级别的全局变量;线程id在调试多线程程序时是非常有用的东西;…

coap:使用californium建立coap server和client的简单示例

【pom.xml】 <dependency><groupId>org.eclipse.californium</groupId><artifactId>californium-core</artifactId><version>2.0.0-M7</version> </dependency> <dependency><groupId>org.eclipse.californium&l…

【第13章】SpringBoot实战篇之项目部署

文章目录 前言一、准备1. 引入插件2. 打包3. 启动4. 后台启动 二、跳过测试模块三、外置配置文件1.引入插件2.忽略配置文件3. 外置配置文件 总结 前言 项目部署需要把项目部署到Linux服务器上&#xff0c;SpringBoot项目通过Maven打包即可快速生成可运行Jar包程序。 一、准备 …

Comfyui容器化部署与简介

目前使用 Stable Diffusion 进行创作的工具主要有两个&#xff1a;Stable Diffusion WebUI 和 ComfyUI。本文重点介绍ComfyUI的部署使用。 ComfyUI 可定制性很强&#xff0c;可以让创作者搞出各种新奇的玩意&#xff0c;通过工作流的方式&#xff0c;也可以实现更高的自动化水平…

Kimichat使用案例010:快速识别出图片中的表格保存到Excel

文章目录 一、介绍二、图片信息三、输入内容四、输出内容五、markdown提示词六、markdown输出一、介绍 如果有一张图片格式的表格,想要快速复制到Excel表格中,那么一般要借助于OCR工具。之前试过不少在线OCR工具,识别效果差强人意。其实,kimichat就可以非常好的完成这个任务…

文件怎么去重?5个技巧,教你删除重复文件!

一般来说&#xff0c;在处理大量文件时&#xff0c;你可能会遇到重复的类似文件。这些文件占据了电脑上不必要的磁盘空间&#xff0c;导致系统性能下降。而这些文件可以是不同类型的&#xff0c;如照片、视频、音频、存档、文档等。正因如此&#xff0c;您需要通过文件去重来删…

质量小议38 -- 60岁退休的由来

总是要有个标准&#xff0c;质量更是如些。 标准不是固定不变的&#xff0c;与时俱进。 关键词&#xff1a;当时的人均寿命&#xff1b;渐进式 60岁退休。 22大学毕业开始工作&#xff08;当然可能会更早&#xff09;&#xff0c;到60岁退休&#xff0c;要工作38年。 …

C++ 史上首次超越 C,跃至榜二

TIOBE 公布了 2024 年 6 月的编程语言排行榜。 C在本月的TIOBE指数中成功超越了C&#xff0c;成为新的第二名。它是一种被广泛应用于嵌入式系统、游戏开发和金融交易软件等领域的编程语言。这次的排名是C在TIOBE指数中的历史最高位&#xff0c;同时也是C语言的历史最低位。 T…

(2024,自监督 ViT,全监督 ViT,损失可视化,MAE,RC-MAE,自蒸馏,EMA)可视化自监督 ViT 的损失景观

Visualizing the loss landscape of Self-supervised Vision Transformer 公和众和号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0 摘要 2 基础&#xff1a;MAE 和 RC-MAE 3 损失景观 3.1 分…

QT C++(QT控件 QPushButton,QRadioButton,QCheckBox)

文章目录 1. QPushButton 普通按钮2. QRadioButton 单选按钮3. QCheckBox 复选按钮 1. QPushButton 普通按钮 QPushButton中的重要属性 text&#xff1a;按钮中的文本icon&#xff1a;按钮的图标iconSize&#xff1a;按钮中图标的尺寸shortCut&#xff1a;按钮对应的快捷键&a…

Unity3d使用3D WebView for Windows and macOS打开全景网页(720云)操作问题记录

问题描述 使用Unity3d内嵌网页的形式打开720云中的全景图这个功能&#xff0c;使用的是3D WebView for Windows and macOS插件&#xff0c;720云的全景图在浏览器上的操作是滑动鼠标滚轮推远/拉近全景图&#xff0c;鼠标左键拖拽网页可以旋转全景图内容。网页的打开过程是正常…

IDEA创建Mybatis项目

IDEA创建Mybatis项目 第一步&#xff1a;创建库表 -- 创建数据库 create database mybatis_db;-- 使用数据库 use mybatis_db;-- 创建user表 CREATE TABLE user (id INT AUTO_INCREMENT PRIMARY KEY,username VARCHAR(50) NOT NULL,password VARCHAR(50) NOT NULL,email VARC…

transformer中对于QKV的个人理解

目录 1、向量点乘 2、相似度计算举例 3、QKV分析 4、整体流程 (1) 首先从词向量到Q、K、V (2) 计算Q*&#xff08;K的转置&#xff09;&#xff0c;并归一化之后进行softmax (3) 使用刚得到的权重矩阵&#xff0c;与V相乘&#xff0c;计算加权求和。 5、多头注意力 上面…

记一次postgresql拼接函数string_agg() 和row_number() 使用

PG两个函数使用需求和简单介绍 需求背景介绍第一个需求背景是这样的需求升级一下接下来讲讲STRING_AGG()基本语法排序 然后我们再说说ROW_NUMBER()基本语法使用 row_number() over (partition by) 进行分组统计使用 row_num限定每组数量 需求背景介绍 第一个需求背景是这样的 …

【MATLAB源码-第222期】基于matlab的改进蚁群算法三维栅格地图路径规划,加入精英蚁群策略。包括起点终点,障碍物,着火点,楼梯。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 蚁群算法&#xff08;Ant Colony Optimization&#xff0c;ACO&#xff09;是一种通过模拟蚂蚁觅食行为的启发式优化算法。它由意大利学者Marco Dorigo在20世纪90年代初提出&#xff0c;最初用于解决旅行商问题&#xff08;T…

从《千脑智能》看大模型

千脑智能与大模型 千脑智能介绍 世界模型千脑智能理论——对大脑的全新理解旧大脑&#xff1a;演化的历史烙印新大脑&#xff1a;智慧的创新引擎新旧大脑的互动与争斗启示与借鉴 大脑对信息的处理和建模六根六尘六识 新脑&#xff1a;智能的创新中枢旧脑&#xff1a;生存的本能…