A - Guess the Maximum
直接暴力枚举 a i , a i + 1 a_i,a_{i+1} ai,ai+1找最小的最大值
答案即为最小的最大值-1
code:
#include<bits/stdc++.h>
#define endl '\n'
#define fast() ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define F first
#define S second
#define lowbit(x) ((x) & (-x))
#define _ int _T; cin >> _T; while(_T --)
#define int long long
#define no cout << "NO" << endl
#define yes cout << "YES" << endlusing namespace std;
typedef pair<int, int> PII;
typedef pair<char,int> PCI;
const int N = 3e5 + 7;
const int mod = 998244353;
int n,m,k;
int a[N],b[N];
//PII p[N];void solve(){cin >> n;for(int i = 0;i < n;i ++) cin >> a[i];int mx = 1e18;for(int i = 0;i < n - 1;i ++){mx = min(mx,max(a[i],a[i + 1]));}cout << mx - 1 << endl;
}signed main(){fast();_solve();return 0;
}
B - XOR Sequences
序列长度无限 所以从最低位到最高位按位枚举 答案为小于最先不同的位数的所有值 即 ( 1 < < i ) (1<<i) (1<<i) 高位总会有 ⨁ \bigoplus ⨁后使其相等的值
code:
#include<bits/stdc++.h>
#define endl '\n'
#define fast() ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define F first
#define S second
#define lowbit(x) ((x) & (-x))
#define _ int _T; cin >> _T; while(_T --)
#define int long long
#define no cout << "NO" << endl
#define yes cout << "YES" << endlusing namespace std;
typedef pair<int, int> PII;
typedef pair<char,int> PCI;
const int N = 3e5 + 7;
const int mod = 998244353;
int n,m,k;
int a[N],b[N];
//PII p[N];void solve(){cin >> n >> m;for(int i = 0;i < 32;i ++){int cnt1 = (n >> i) & 1;int cnt2 = (m >> i) & 1;if(cnt1 != cnt2){cout << ((int)1 << i) << endl;return;}}
}signed main(){fast();_solve();return 0;
}
C - Earning on Bets
假设每一位放的硬币数为 a i a_i ai 那么总共就会放 s u m = ∑ i = 1 n a i sum = \sum\limits_{i = 1}^n{a_i} sum=i=1∑nai个硬币
然后我们我们知道获胜会得到 a i ∗ k i a_i*k_i ai∗ki金币 并且 s u m < a i ∗ k i sum < a_i*k_i sum<ai∗ki
即 s u m k i sum \over k_i kisum < a i a_i ai
并且有 ∑ i = 1 n s u m k i < ∑ i = 1 n a i \sum\limits_{i = 1}^n{sum \over k_i} < \sum\limits_{i = 1}^n{a_i} i=1∑nkisum<i=1∑nai
即 ∑ i = 1 n s u m k i < s u m \sum\limits_{i = 1}^n{sum \over k_i} < sum i=1∑nkisum<sum
那么有 ∑ i = 1 n 1 k i < 1 \sum\limits_{i = 1}^n{1 \over k_i} < 1 i=1∑nki1<1
那么我们可以令 s u m = l c m ( k 1 , k 2 , k 3 , . . . , k n ) sum = lcm(k_1,k_2,k_3,...,k_n) sum=lcm(k1,k2,k3,...,kn)
这样 s u m ∗ k i sum * k_i sum∗ki可以不剩余并且可以 s u m k i sum \over k_i kisum的分给每个位置的 a i a_i ai
即有 ∑ i = 1 n s u m k i < s u m \sum\limits_{i = 1}^n{sum \over k_i} < sum i=1∑nkisum<sum 满足此式子即说明有一个解
解为每个位置分 s u m k i sum \over k_i kisum
code:
#include<bits/stdc++.h>
#define endl '\n'
#define fast() ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define F first
#define S second
#define lowbit(x) ((x) & (-x))
#define _ int _T; cin >> _T; while(_T --)
#define int long long
#define no cout << "NO" << endl
#define yes cout << "YES" << endlusing namespace std;
typedef pair<int, int> PII;
typedef pair<char,int> PCI;
const int N = 3e5 + 7;
const int mod = 998244353;
int n,m,k;
int a[N],b[N];
//PII p[N];void solve(){cin >> n;int lcm = 1;for(int i = 0;i < n;i ++){cin >> a[i];lcm = (a[i] * lcm) / __gcd(a[i],lcm);} int sum = 0;for(int i = 0;i < n;i ++) sum += lcm / a[i];if(sum >= lcm){cout << -1 << endl;return;}for(int i = 0;i < n;i ++) cout << lcm / a[i] << " ";cout << endl;
}signed main(){fast();_solve();return 0;
}
D - Fixing a Binary String
直接从头开始遍历并且记录连续的0或1的个数
如果遍历过程中个数大于k了 那么就有两种切割情况:
- 直接从刚大于时的位置前切开
- 看末尾的连续序列长度是否小于k 如果小于k并且 s i = = s n s_i == s_n si==sn那就说明此处可以拼接上去 就从此序列开始位置+ (k - 末尾的连续序列长度 - 1)处切割
然后看这两种切割方式是否可以达成连续k个0或1交替出现即可
如果遍历过程中个数小于k了 :
- 那么就在此前切割
code:
#include<bits/stdc++.h>
#define endl '\n'
#define fast() ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define F first
#define S second
#define lowbit(x) ((x) & (-x))
#define _ int _T; cin >> _T; while(_T --)
#define int long long
#define no cout << "NO" << endl
#define yes cout << "YES" << endlusing namespace std;
typedef pair<int, int> PII;
typedef pair<char,int> PCI;
const int N = 3e5 + 7;
const int mod = 998244353;
int n,m,k;
int a[N],b[N];
//PII p[N];
int flag;void check(string ans){int len = 1;for(int i = 1;i < n;i ++){if(ans[i] == ans[i - 1]){len ++;if(len > k){flag = 1;break;}} else{if(len != k){flag = 1;break;}len = 1;}}
}void solve(){cin >> n >> k;string s; cin >> s;int pos = -1,cnt = 1;int pos2 = -1;int st = 0;int mx = 1;for(int i = n - 2;i >= 0;i --){if(s[i] != s[i + 1]){break;} else{mx ++;}}for(int i = 1;i < n;i ++){if(s[i] == s[i - 1]){cnt ++;if(cnt > k){pos = i - 1;if(s[i] == s[n - 1]){if(mx >= k) pos2 = -1;else if(i - st >= k - mx) pos2 = st + k - mx - 1;}break;}} else{if(cnt != k){pos = i - 1;break;}st = i;cnt = 1;}}if(pos == -1){cout << n << endl;return;}string s1 = s.substr(0,pos + 1);string s2 = s.substr(pos + 1);reverse(s1.begin(),s1.end());string ans = s2 + s1;flag = 0;check(ans);if(!flag){cout << pos + 1 << endl;return;}if(pos2 == -1){cout << -1 << endl;return;}s1 = s.substr(0,pos2 + 1);s2 = s.substr(pos2 + 1);reverse(s1.begin(),s1.end());ans = s2 + s1;flag = 0;check(ans);if(!flag){cout << pos2 + 1 << endl;return;}cout << -1 << endl;
}signed main(){fast();_solve();return 0;
}