高光谱图像聚类的像素-超像素对比学习与伪标签校正

Pixel-Superpixel Contrastive Learning and Pseudo-Label Correction for Hyperspectral Image Clustering

文章目录

  • Pixel-Superpixel Contrastive Learning and Pseudo-Label Correction for Hyperspectral Image Clustering
    • 摘要
    • 引言
    • 相关方法
      • 对比学习
    • 方法
      • 超像素对比学习
      • 像素级对比学习
      • 伪标签校正

摘要

本文提出了一种新的高光谱图像(HSI)聚类方法,名为像素-超像素对比学习与伪标签校正(PSCPC)。该方法结合了像素级和超像素级的对比学习,通过超像素捕获领域特定的细粒度特征,并在超像素内部对少量像素进行比较学习。PSCPC通过一个伪标签校正模块来对齐像素级和超像素级的聚类伪标签,使用像素级聚类结果来指导超像素级聚类,从而提高模型的泛化能力。

引言

硬件成像技术的快速发展,特别是高光谱遥感技术,它使用纳米级成像光谱仪对地面物体进行多波段的同时成像。HSI包含了丰富的空间、辐射和光谱信息,使得图像分析和处理领域中的地面物体分类成为一个重要的研究方向。由于在实际应用中获取大量标记训练样本是困难的,因此无监督分类或聚类方法得到了广泛应用。传统聚类算法在高维数据聚类任务中存在局限性,深度学习结合传统聚类算法的深度聚类算法能够更好地利用HSI的光谱和空间信息。

  • 文章的主要贡献

提出了一种新颖的HSI聚类方法PSCPC,它同时关注硬正样本和硬负样本对。
设计了一个综合的相似性度量标准,考虑了属性和结构信息,以更好地揭示样本之间的关系。
在高置信度聚类信息的指导下,提出了一种样本权重调节策略,动态增加硬样本对的权重,同时减少容易样本的权重。
在六个数据集上的广泛实验结果证明了PSCPC方法的优越性和有效性。
在这里插入图片描述

相关方法

对比学习

物体具有某些一般特征,对比学习学习这样的特征,具有很强的可迁移性,在无标签数据的聚类中能够取得很好的效果。对比学习算法的核心思想是利用样本信息生成监督信号,通过不断缩短正样本之间的距离、推开负样本之间的距离来提取更好的模态特征。构建正负样本并提取特征后,需要设置损失函数来减小表示空间中正例对之间的距离。损失函数一般采用InfoNCE损失

方法

超像素对比学习

HSI研究的先验知识表明,高光谱数据包含丰富的局部空间结构信息和一定的同质性[17],在超像素级别执行任务有助于节省资源并更好地聚合空间信息。超像素是图像分割的结果;每个超像素是一组具有相似属性的像素。尺度参数估计(ESP)方法[24]用于遥感数据的图像分割。
超像素的特征是编码器提取的像素特征图的平均值。

像素级对比学习

HSI聚类的本质是将相似的像素划分为更接近的簇。因此,改进像素级表示学习可以提高聚类精度,因为它鼓励空间上接近的像素具有相似的表示。为了获得平滑的特征和精细的分类,我们提出了一种像素级对比学习方法。由于超像素中的大部分像素属于同一类,为了节省计算资源,我们在每个超像素中随机选择m个像素与超像素特征H进行比较。

伪标签校正

与像素级聚类相比,由于超像素级任务的输入规模较大,聚类的精细度较低。此外,超像素级对比损失将除最接近的k个样本之外的所有样本视为负样本,这可能会分离相似的样本并破坏聚类结构。为了提高聚类模型的鲁棒性,我们提出了伪标签校正模块。具体来说,每个超像素有两个标签。首先,直接使用k均值聚类算法来获得每个超像素的预测标签。其次,对于超像素中的M个像素,根据聚类结果计算该超像素的伪标签ˆy,即各类像素所占的比例。为了避免预测结果过于绝对,这里的预测标签和伪标签都是软标签。伪标签校正模块的目的是保证两种方法得到的结果一致。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/849923.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【嵌入式】智能系统优化:【C++】驱动的【机器学习】与【数据挖掘】技术

目录 一、嵌入式系统简介 二、C在嵌入式系统中的优势 三、机器学习在嵌入式系统中的挑战 四、C实现机器学习模型的基本步骤 五、实例分析:使用C在嵌入式系统中实现手写数字识别 1. 数据准备 2. 模型训练与压缩 3. 模型部署 六、优化与分析 1. 模型优化 模…

什么时候用C而不用C++?

做接口只用C,千万别要C。C是编译器敏感的,一旦导出的接口里有 std::string这些东西,以及类,注定了要为各个编译器的各个版本准备独立的库。 刚好我有一些资料,是我根据网友给的问题精心整理了一份「C的资料从专业入门…

Gitlab---添加描述模版

0 Preface/Foreword Gitlab是代码托管平台,DevOps。因其免费,被广泛使用。GitLab不但可以管理代码,也可以管理issue,创建milestone等等。针对issue管理,支持描述模版功能,即对于新建的issue,可…

深度网络学习笔记(二)——Transformer架构详解(包括多头自注意力机制)

Transformer架构详解 前言Transformer的整体架构多头注意力机制(Multi-Head Attention)具体步骤1. 步骤12. 步骤23. 步骤34. 步骤4 Self-Attention应用与比较Self-Attention用于图像处理Self-Attention vs. CNNSelf-Attention vs. RNN Transformer架构详…

【第11章】SpringBoot实战篇之文章(下)含条件分页

文章目录 前言一、文章列表查询1. ArticleController2. ArticleService 二 、文章查询1. ArticleController2. ArticleService 三、文章更新1. ArticleController2. ArticleService 四、文章删除1. ArticleController2. ArticleService 五、文章列表查询(条件分页)1.ArticleCon…

医疗器械网络安全风险管理的基本步骤

医疗器械网络安全风险管理是一个复杂的过程,涉及到多个环节和步骤。以下是一些基本的步骤和关键点: 风险识别:首先需要对医疗器械的软件、网络连接和通信协议等进行漏洞分析,识别潜在的安全漏洞和弱点。这可能涉及对设备的渗透测…

MbedTLS源码跨平台编译(window/macos/linux)

1.window平台编译: 克隆: git clone --recursive https://github.com/Mbed-TLS/mbedtls.git 克隆成功 添加OpenSSL环境变量 验证环境 使用cmake编译 cmake ../生成配置时出错 出现上面原因是克隆下来的library与programs及tests目录少文件了,直接下载zip包替换library目录

docker pull image 报错 dial tcp 31.13.88.169:443: i/o timeout

一、错误重现 error pulling image configuration: download failed after attempts6: dial tcp 31.13.88.169:443: i/o timeout 在执行docker build构建镜像,拉取镜像时报错 或者直接docker pull镜像时报错 实质都是拉取镜像源超时报错,那么就是镜像源…

Java sql中 >、<、≥、≤ 等的转义字符 代替符号

Java中写sql会遇到一些 >、<、≥、≤ 符号转化问题&#xff0c;导致sql语句无法运行。 替代方法如下&#xff1a; 第一种方法&#xff1a; < &#xff1a; < < &#xff1a; < > &#xff1a; > > &#xff1a; > sql示例如下&#x…

IEDA 默认集成依赖概述

IEDA 默认集成依赖概述 目录概述需求&#xff1a; 设计思路实现思路分析 1.Developer Tools:GraalVM Native supportGraphQL DGs Code GenerationSpring Boot DevToolsLombokSpring Configuration ProcessorDocker Compose supportSpring Modulith 2.WebWebSpring WebSpring Re…

详解 Flink 的 window API

一、window 概述 ​ Streaming 流式计算是一种被设计用于处理无限数据集的数据处理引擎&#xff0c;而无限数据集是指一种不断增长的本质上无限的数据集&#xff0c;而 Flink window 是一种将无限数据切割为有限块进行处理的手段。window 是无限数据流处理的核心&#xff0c; …

单片机原理及技术(三)—— AT89S51单片机(二)(C51编程)

一、AT89S51单片机的并行I/O端口 1.1 P0口 AT89S51的P0口是一个通用的I/O口&#xff0c;可以用于输入和输出。每个引脚都可以通过软件控制为输入或输出模式。 1.1.1 P0口的工作原理 P0口的工作原理是通过对P0寄存器的读写操作来控制P0口的引脚。 输出模式&#xff1a;当P0口…

UI学习笔记(一)

UI学习 一&#xff1a;UIView基础frame属性隐藏视图对象&#xff1a;UIView的层级关系 二&#xff1a;UIWindow对象三&#xff1a;UIViewController基础UIViewController使用 四&#xff1a;定时器与视图移动五&#xff1a;UISwitch控件六&#xff1a;滑动条和进度条七&#xf…

2021年vue面试题整理(万字解析)

一、对MVVM的理解 MVVM分为Model、View、ViewModel。 Model 代表数据模型&#xff0c;数据和业务逻辑都在Model层中定义&#xff1b;泛指后端进行的各种业务逻辑处理和数据操控&#xff0c;对于前端来说就是后端提供的 api 接口。 View 代表UI视图&#xff0c;负责数据的展示…

【Python数据分析--Numpy库】Python数据分析Numpy库学习笔记,Python数据分析教程,Python数据分析学习笔记(小白入门)

一&#xff0c;Numpy教程 给大家推荐一个很不错的笔记&#xff0c;个人长期学习过程中整理的 Python超详细的学习笔记共21W字点我获取 1-1 安装 1-1-1 使用已有的发行版本 对于许多用户&#xff0c;尤其是在 Windows 上&#xff0c;最简单的方法是下载以下的 Python 发行版…

Swift 序列(Sequence)排序面面俱到 - 从过去到现在(一)

概览 在任何语言中对序列(或集合)元素的排序无疑是一种司空见惯的常规操作,在 Swift 语言里自然也不例外。序列排序看似简单,实则“暗藏玄机”。 要想真正掌握 Swift 语言中对排序的“各种姿势”,我们还得从长计议。不如就先从最简单的排序基本功开始聊起吧。 在本篇博…

【十大排序算法】插入排序

插入排序&#xff0c;如一位细心的整理者&#xff0c; 她从序列的左端开始&#xff0c; 挨个将元素归位。 每当她遇到一个无序的元素&#xff0c; 便将它插入已经有序的部分&#xff0c; 直至所有元素有序排列。 她不张扬&#xff0c;却有效率&#xff0c; 用自己的方式&…

pdf文件在线压缩网站,pdf文件在线压缩工具软件

在数字化时代的今天&#xff0c;PDF文件已经成为我们日常生活和工作中不可或缺的一部分。然而&#xff0c;随着PDF文件的广泛使用&#xff0c;其文件大小问题也日益凸显。过大的PDF文件不仅占用了大量的存储空间&#xff0c;而且在传输和共享过程中也往往面临诸多不便。因此&am…

SylixOS网卡多 IP 配置

概述 网卡多 IP 是指在同一个网络接口上配置和绑定多个 IP 地址。 引进网卡多 IP 的目的主要有以下几个&#xff1a; 提供服务高可用性。通过在同一接口绑定多个 IP 地址&#xff0c;然后在服务端使用这些 IP 地址启动多个服务实例。这样在任意一 IP 出现问题时&#xff0c;可…

Redis学习(十二)Redis的三种删除策略

目录 一、背景二、Redis 的三种删除策略2.1 定时删除&#xff08;用CPU换内存空间&#xff09;2.2 定期删除2.3 惰性删除&#xff08;用内存换CPU性能&#xff09; 三、总结 一、背景 我们都知道 Redis 是一种内存数据&#xff0c;所有的数据均存储在内存中&#xff0c;可以通…