电阻、电容和电感测试仪设计

在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。然而万用表有一定的局限性,比如:不能够测量电感,而且容量稍大的电容也显得无能为力。所以制作一个简单易用的电抗元器件测量仪是很有必要的。

现在国内外有很多仪器设备公司都致力于低功耗手持式电抗元器件测量仪的研究与制作,而且精度越来越高,低功耗越来越低,体积小越来越小一直是他们不断努力的方向。

该类仪器的基本工作原理是将电阻器阻值的变化量,电容器容值的变化量,电感器电感量的变化量通过一定的调理电路统统转换为电压的变化量或者频率的变化量等等,再通过高精度AD采集或者频率检测计算等方法来得到确定的数字量的值,进而确定相应元器件的具体参数。

2、电路方案的比较与论证2.1电阻测量方案

方案一:利用串联分压原理的方案

根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。测量待测电阻Rx和已知电阻R0上的电压,记为UxU0.

方案二:利用直流电桥平衡原理的方案

根据电路平衡原理,不断调节电位器R3,使得电表指针指向正中间,再测量电位器电阻值。

  方案三:利用555构成单稳态的方案

 

图2-3   555定时器构成单稳态电路图

根据555定时器构成单稳态,产生脉冲波形,通过单片机读取高低电平得出频率,通过公式换算得到电阻阻值。  

由 

得 

上述三种方案从对测量精度要求而言,方案一的测量精度极差,方案二需要测量的电阻值多,而且测量调节麻烦,不易操作与数字化,相比较而言,方案三还是比较符合要求的,由于是通过单片机读取转化,精确度会明显的提高。故本设计选择了方案三。

2.2电容测量方案

方案一:利用串联分压原理的方案(原理图同图2-1)

通过电容换算的容抗跟已知电阻分压,通过测量电压值,再经过公式换算得到电容的值。原理同电阻测量的方案一。

方案二:利用交流电桥平衡原理的方案(原理图同图2-2)

  通过调节Z1、Z2使电桥平衡。这时电表的读数为零。通过读取Z1、Z2、Zn的值,即可得到被测电容的值。

方案三:利用555构成单稳态原理的方案

图2-4   555定时器构成单稳态电路图

根据555定时器构成单稳态,产生脉冲波形,通过单片机读取高低电平得出频率,通过公式换算得到电容值。

由 

R1=R2,得 

上述三种方案从对测量精度要求而言,方案一的测量精度极差,方案二需要测量的电容值多,而且测量调节麻烦、电容不易测得准确值,不易操作与数字化,相比较而言,方案三还是比较符合要求的,由于是通过单片机读取转化,精确度会明显的提高。故本设计选择了方案三。

2.3电感测量方案

方案一:利用交流电桥平衡原理的方案(原理图同图2-2)

方案二:利用电容三点式正弦波震荡原理的方案

   

                                                       图2-5 电容三点式正弦波震荡电路图

上述两种方案从对测量精度要求而言,方案二需要测量的电感值多,而且测量调节麻烦、电感不易测得准确值,不易操作与数字化,相比较而言,方案二还是比较符合要求的,由于是通过单片机读取转化,精确度会明显的提高。故本设计选择了方案二。

3、核心元器件介绍3.1 LM317的介绍

LM317可输出连续可调的正电压,可调电压范围1.2V—37V,最大输出电流为1.5A,内部含有过流、过热保护电路,具有安全可靠、应用方便、性能优良等特点。

引脚图:

典型电路:

R1R2组成电压输出调节电路,输出电压UO表达式为:

 V
电容C2R2并联组成滤波电路,减小输出的纹波电压。二极管D2的作用是防止输出端与地短路时,电容C2上的电压损坏稳压器。

3.2 LM337的介绍

与LM317正好相反,LM337可输出连续可调的负电压,可调电压范围1.2V—37V,最大输出电流为1.5A,内部含有过流、过热保护电路,具有安全可靠、应用方便、性能优良等特点。

引脚图:

典型电路:

R1R2组成电压输出调节电路,输出电压UO表达式为:

 V


3.3 NE555的介绍

555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲震荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。它由于工作可靠、使用方便、价格低廉,目前被用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体。
555集成电路内部结构图:

引脚图:

管脚介绍:
555集成电路是8脚封装,双列直插型,如图(A)所示,按输入输出的排列可看成如图(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端,是下比较器的输入;3脚是输出端(VO),它有0和1两种状态,由输入端所加电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(VC),可用它改变上下触发电平值;8脚是电源端,1脚是接地端。
典型应用—555震荡器电路:
由555构成的多谐振荡器如图(a)所示,输出波形如图(b)所示。

3.4 NE5532的介绍

NE5532是一种双运放高性能低噪声运算放大器。 相比较大多数标准运算放大器,如1458,它显示出更好的噪声性能,提高输出驱动能力和相当高的小信号和电源带宽。这使该器件特别适合应用在高品质和专业音响设备,仪器和控制电路和电话通道放大器。如果噪音非常最重要的,因此建议使用5532A版,因为它能保证噪声电压指标。
NE5532特点:
  •小信号带宽:10MHZ
•输出驱动能力:600Ω,10V(有效值)
•输入噪声电压:5nV/√Hz(典型值)
•直流 [url=]电压增[/url]益:50000
•交流电压增益:2200-10KHZ
•功率带宽: 140KHZ
•转换速率: 9V/μs
•大的电源电压范围:±3V-±20V
•单位增益补偿
NE5532引脚图:

NE5532内部原理图:

(见附件)

3.5 STC89C52的介绍

STC单片机的优点:
★加密性强,很难解密或破解
★超强抗干扰:
1 、高抗静电(ESD保护)
2 、轻松过 2KV/4KV快速脉冲干扰(EFT 测试)
3 、宽电压,不怕电源抖动
4 、宽温度范围,-40℃~85℃
5 、I/O 口经过特殊处理
6 、单片机内部的电源供电系统经过特殊处理
7 、单片机内部的时钟电路经过特殊处理
8 、单片机内部的复位电路经过特殊处理
9 、单片机内部的看门狗电路经过特殊处理
★超低功耗:
1 、掉电模式:典型功耗<0.1 μ A   
2 、空闲模式:典型功耗2mA
3 、正常工作模式:典型功耗4mA-7mA
4 、掉电模式可由外部中断唤醒,适用于电池供电系统,如水表、气表、便携设备等.
★在系统可编程,无需编程器,可远程升级
★可送 STC-ISP 下载编程器,1 万片/人/天
★可供应内部集成 MAX810 专用复位电路的单片机
STC89C52单片机最小系统原理图:

3.6 TLC549的介绍

  TLC549是美国德州仪器公司生产的8位串行A/D转换器芯片,可与通用微处理器、控制器通过CLK、CS、DATA OUT三条口线进行串行接口。具有4MHz片内系统时钟和软、硬件控制电路,转换时间最长17μs, TLC549为40 000次/s。总失调误差最大为±0.5LSB,典型功耗值为6mW。采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,VREF-接地,VREF+VREF-≥1V,可用于较小信号的采样。
引脚图:

极限参数:
    ●电源电压:6.5V;
  ●输入电压范围:0.3V~VCC+0.3V;
  ●输出电压范围:0.3V~VCC+0.3V;
  ●峰值输入电流(任一输入端):±10mA;
  ●总峰值输入电流(所有输入端):±30mA;
  ●工作温度: TLC549C:0℃~70℃
    TLC549I:-40℃~85℃
    TLC549M:-55℃~125℃
工作原理:
  TLC549均有片内系统时钟,该时钟与I/O CLOCK是独立工作的,无须特殊的速度或相位匹配。其工作时序如图2所示。
  当CS为高时,数据输出(DATA OUT)端处于高阻状态,此时I/O CLOCK不起作用。这种CS控制作用允许在同时使用多片TLC549时,共用I/O CLOCK,以减少多路(片)A/D并用时的I/O控制端口。
通常的控制时序:
    (1)将CS置低。内部电路在测得CS下降沿后,再等待两个内部时钟上升沿和一个下降沿后,然后确认这一变化,最后自动将前一次转换结果的最高位(D7)位输出到DATA OUT端上。
  (2) 前四个I/O CLOCK周期的下降沿依次移出第2、3、4和第5个位(D6、D5、D4、D3),片上采样保持电路在第4个I/O CLOCK下降沿开始采样模拟输入。
   (3)接下来的3个I/O CLOCK周期的下降沿移出第6、7、8(D2、D1、D0)个转换位,
  (4)最后,片上采样保持电路在第8个I/O CLOCK周期的下降沿将移出第6、7、8(D2、D1、D0)个转换位。保持功能将持续4个内部时钟周期,然后开始进行32个内部时钟周期的A/D转换。第8个I/O CLOCK后,CS必须为高,或I/O CLOCK保持低电平,这种状态需要维持36个内部系统时钟周期以等待保持和转换工作的完成。如果CS为低时I/O CLOCK上出现一个有效干扰脉冲,则微处理器/控制器将与器件的I/O时序失去同步;若CS为高时出现一次有效低电平,则将使引脚重新初始化,从而脱离原转换过程。
  在36个内部系统时钟周期结束之前,实施步骤(1)-(4),可重新启动一次新的A/D转换,与此同时,正在进行的转换终止,此时的输出是前一次的转换结果而不是正在进行的转换结果。
  若要在特定的时刻采样模拟信号,应使第8个I/O CLOCK时钟的下降沿与该时刻对应,因为芯片虽在第4个I/O CLOCK时钟下降沿开始采样,却在第8个I/O CLOCK的下降沿开始保存。
时序图:

3.7 ICL7660的介绍

ICL7660是Maxim公司生产的小功率极性反转电源转换器。该集成电路与TC7662ACPA MAX1044的内部电路及引脚功能完全一致,可以直接替换。
引脚图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/848385.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法训练营第二十九天|LeetCode491 非递减子序列、LeetCode46 全排列、LeetCode47 全排列Ⅱ

题1&#xff1a; 指路&#xff1a;491. 非递减子序列 - 力扣&#xff08;LeetCode&#xff09; 思路与代码&#xff1a; 对于这个题我们应该想起我们做过的子集问题&#xff0c;就是在原来的问题上加一个去重操作。我们用unordered_set集合去重&#xff0c;集合中使用过的元…

智能视频监控平台LntonCVS视频汇聚共享平台智慧楼宇应用方案

随着城市经济的迅速发展&#xff0c;大中型城市的写字楼数量不断增加。在像香港、台北、上海、北京等大城市&#xff0c;写字楼的安保成本相当高。为了降低这一成本&#xff0c;越来越多的物业公司开始采用技术手段。写字楼安防监控系统便是其中之一&#xff0c;它利用安全防范…

【control_manager】无法加载,gazebo_ros2_control 0.4.8,机械臂乱飞

删除URDF和SDRF文件中的特殊注释#, !,&#xff1a; xacro文件解析为字符串时出现报错 一开始疯狂报错Waiting for /controller_manager node to exist 1717585645.4673686 [spawner-2] [INFO] [1717585645.467015300] [spawner_joint_state_broadcaster]: Waiting for /con…

java开发常用代码

基础类型转换 详情见&#xff1a;https://blog.csdn.net/sinat_32502451/article/details/139417740 BigDecimal计算&#xff1a; 涉及金额之类的运算&#xff0c;不要用 Double、Float 这些类型&#xff0c;用 BigDecimal 才能精确计算。 详情见&#xff1a; https://blog.…

002 Spring中Bean的生命周期

文章目录 Java对象的实例化和Spring中Bean的实例化对象实例化&#xff08;Instantiation&#xff09;&#xff1a;Spring中Bean的实例化&#xff1a; Java对象的初始化和Spring中Bean的初始化Java对象的初始化&#xff1a;Spring中Bean的初始化&#xff1a; Java对象的完整生命…

这家公司的39亿存款,无法收回了?

新闻提要 4日晚间&#xff0c;亿利洁能发布公告称&#xff0c;亿利财务公司对于公司存放在亿利财务公司的 39.06 亿元货币资金的用途主要是向亿利集团及其关联方发放贷款&#xff0c;近日公司获悉相关贷款已被划分为次级贷款&#xff08;不良贷款的一种&#xff09;&#xff0…

前端 JS 经典:下载的流式传输

触发下载在浏览器中有两种方式&#xff1a;1. 客户端的方式 2. 服务器的方式 1. 服务器的方式 通过 a 元素链接到一个服务器的地址&#xff0c;然后需要后端人员配置&#xff0c;当用户点击按钮请求这个地址时&#xff0c;服务端给他加上一个响应头。Content-Disposition 设置…

Pinterest免费引流实操演示

这篇文章中你将了解到 1.Pinterest网站介绍&#xff0c;用户群体&#xff0c;适合做什么品类。 2.现在的商家都在上面做什么&#xff1f;案例展示。 3.我们在这个站免费引流要怎么做以及注意事项。 1.Pinterest网站介绍&#xff0c;用户群体&#xff0c;适合做什么品类。 P…

Nginx配置详细解释

文章目录 一、配置详细解释关闭版本修改启动的进程数cpu与work进程绑定nginx进程的优先级work进程打开的文件个数event事件 二、Http设置协议配置说明mime虚拟主机aliaslocationaccess模块验证模块自定义错误页面自定义日志存放位置try_files检测文件是否存在长连接 一、配置详…

006 HashSet是如何去重的

文章目录 HashSet是如何去重的数据结构哈希函数与索引计算存储与去重查找与删除特征与总结键 HashSet是如何去重的 数据结构 HashSet底层依赖于HashMap的数据结构&#xff0c;即一个哈希表。这个哈希表本质上是一个数组&#xff0c;数组的每个元素称为一个桶。每个桶中存储的…

附件下载跨域问题-解决

1.若依附件下载跨域 源码&#xff1a; package com.ruoyi.common.utils.file;import java.io.*; import java.net.URLEncoder; import java.nio.charset.StandardCharsets; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; i…

真实场景 这周的任意一天,获取上周一到周日的时间范围-作者:【小可耐教你学影刀RPA】

用户场景 我想在这周的任意一天&#xff0c;获取上周一到周日的时间范围&#xff0c;应该怎么做 解决办法1 用指令解决 最简单 解决办法2 自己写逻辑 不过要用到 获取当前日期指令 当前是礼拜几

Hugging Face系列2:详细剖析Hugging Face网站资源——实战六类开源库

Hugging Face系列2&#xff1a;详细剖析Hugging Face网站资源——实战六类开源库 前言本篇摘要2. Hugging Face开源库2.1 transformers2.1.1 简介2.1.2 实战1. 文本分类2. 图像识别3. 在Pytorch和TensorFlow中使用pipeline 2.2 diffusers2.2.1 简介2.2.2 实战1. 管线2. 模型和调…

俄罗斯ozon平台计算器,ozon定价计算器

在数字化飞速发展的今天&#xff0c;电商平台已成为商家们展示产品、吸引顾客的重要窗口。而在俄罗斯这一广阔的市场中&#xff0c;Ozon平台以其独特的优势&#xff0c;成为了众多电商卖家的首选。然而&#xff0c;想要在Ozon平台上脱颖而出&#xff0c;除了优质的产品和服务外…

初识C++ · 反向迭代器简介

目录 前言 反向迭代器的实现 前言 继模拟实现了list和vector之后&#xff0c;我们对迭代器的印象也是加深了许多&#xff0c;但是我们实现的都是正向迭代器&#xff0c;还没有实现反向迭代器&#xff0c;那么为什么迟迟不实现呢&#xff1f;因为难吗&#xff1f;实际上还好。…

《精品生活》万方普刊投稿发表简介

《精品生活》杂志是由国家新闻出版总署批准&#xff0c;南方出版传媒股份有限公司主管&#xff0c;广东大沿海出版工贸有限公司主办&#xff0c;广东精品生活杂志社出版的综合性文化期刊。主要栏目&#xff1a;教学研究、艺术教育、文化广角、民族文化、理论前沿、综合论坛。 刊…

【2024】Kafka Streams纤细介绍与具体使用(1)

目录 介绍关键特性应用场景核心概念部署方式kafka streams的处理模式 具体使用1、准备工作2、添加依赖3、代码实现3、测试 介绍 Kafka Streams是构建在Apache Kafka之上的客户端库&#xff0c;用于构建高效、实时的流处理应用。它允许你以高吞吐量和低延迟的方式处理记录流&am…

Prompt 指南之零样本与少样本提示,超详细解析!

前言 我将在本文中为你带来另外 2 种提示技术&#xff0c;它们分别是&#xff1a; 零样本提示&#xff08;Zero-shot Prompting&#xff09;少样本提示&#xff08;Few-shot Prompting&#xff09; shot 即代表示例 这两种技术利用 LLM 的强大预训练知识&#xff0c;通过最小…

算法学习之:Raft-分布式一致性/共识算法

基础介绍 Raft是什么&#xff1f; Raft is a consensus algorithm that is designed to be easy to understand. Its equivalent to Paxos in fault-tolerance and performance. The difference is that its decomposed into relatively independent subproblems, and it clea…

React@16.x(19)事件的处理

目录 1&#xff0c;React 事件大致原理1.1&#xff0c;几乎所有的事件处理&#xff0c;都在 document 的事件中处理。1.2&#xff0c;事件参数 2&#xff0c;注意事项 1&#xff0c;React 事件大致原理 这里讨论的事件&#xff0c;是指在 React 内置组件上绑定的事件。 大致原理…