chap6 RNN

循环神经网络(RNN)

问题描述:

利用循环神经网络,实现唐诗生成任务

数据集:

唐诗

题目要求:

补全程序,主要是前面的3个空和生成诗歌的一段代码,pytorch需要补全对应的rnn.py文件中的两处代码,生成诗歌开头词汇是:“日、红、山、夜、湖、海、月”

import numpy as np
import collections
import torch
from torch.autograd import Variable
import torch.optim as optimimport rnn as rnn_lstmstart_token = 'G'
end_token = 'E'
batch_size = 64def process_poems1(file_name):""":param file_name::return: poems_vector  have tow dimmention ,first is the poem, the second is the word_indexe.g. [[1,2,3,4,5,6,7,8,9,10],[9,6,3,8,5,2,7,4,1]]"""poems = []with open(file_name, "r", encoding='utf-8', ) as f:for line in f.readlines():try:title, content = line.strip().split(':')# content = content.replace(' ', '').replace(',','').replace('。','')content = content.replace(' ', '')if '_' in content or '(' in content or '(' in content or '《' in content or '[' in content or \start_token in content or end_token in content:continueif len(content) < 5 or len(content) > 80:continuecontent = start_token + content + end_tokenpoems.append(content)except ValueError as e:print("error")pass# 按诗的字数排序poems = sorted(poems, key=lambda line: len(line))# print(poems)# 统计每个字出现次数all_words = []for poem in poems:all_words += [word for word in poem]counter = collections.Counter(all_words)  # 统计词和词频。count_pairs = sorted(counter.items(), key=lambda x: -x[1])  # 排序words, _ = zip(*count_pairs)words = words[:len(words)] + (' ',)word_int_map = dict(zip(words, range(len(words))))poems_vector = [list(map(word_int_map.get, poem)) for poem in poems]return poems_vector, word_int_map, wordsdef process_poems2(file_name):""":param file_name::return: poems_vector  have tow dimmention ,first is the poem, the second is the word_indexe.g. [[1,2,3,4,5,6,7,8,9,10],[9,6,3,8,5,2,7,4,1]]"""poems = []with open(file_name, "r", encoding='utf-8', ) as f:# content = ''for line in f.readlines():try:line = line.strip()if line:content = line.replace(' '' ', '').replace(',', '').replace('。', '')if '_' in content or '(' in content or '(' in content or '《' in content or '[' in content or \start_token in content or end_token in content:continueif len(content) < 5 or len(content) > 80:continue# print(content)content = start_token + content + end_tokenpoems.append(content)# content = ''except ValueError as e:# print("error")pass# 按诗的字数排序poems = sorted(poems, key=lambda line: len(line))# print(poems)# 统计每个字出现次数all_words = []for poem in poems:all_words += [word for word in poem]counter = collections.Counter(all_words)  # 统计词和词频。count_pairs = sorted(counter.items(), key=lambda x: -x[1])  # 排序words, _ = zip(*count_pairs)words = words[:len(words)] + (' ',)word_int_map = dict(zip(words, range(len(words))))poems_vector = [list(map(word_int_map.get, poem)) for poem in poems]return poems_vector, word_int_map, wordsdef generate_batch(batch_size, poems_vec, word_to_int):n_chunk = len(poems_vec) // batch_sizex_batches = []y_batches = []for i in range(n_chunk):start_index = i * batch_sizeend_index = start_index + batch_sizex_data = poems_vec[start_index:end_index]y_data = []for row in x_data:y = row[1:]y.append(row[-1])y_data.append(y)"""x_data             y_data[6,2,4,6,9]       [2,4,6,9,9][1,4,2,8,5]       [4,2,8,5,5]"""# print(x_data[0])# print(y_data[0])# exit(0)x_batches.append(x_data)y_batches.append(y_data)return x_batches, y_batchesdef run_training():# 处理数据集# poems_vector, word_to_int, vocabularies = process_poems2('./tangshi.txt')poems_vector, word_to_int, vocabularies = process_poems1('./poems.txt')# 生成batchprint("finish  loadding data")BATCH_SIZE = 100torch.manual_seed(5)word_embedding = rnn_lstm.word_embedding(vocab_length=len(word_to_int) + 1, embedding_dim=100)rnn_model = rnn_lstm.RNN_model(batch_sz=BATCH_SIZE, vocab_len=len(word_to_int) + 1, word_embedding=word_embedding,embedding_dim=100, lstm_hidden_dim=128)rnn_model = rnn_model.cuda()# optimizer = optim.Adam(rnn_model.parameters(), lr= 0.001)optimizer = optim.RMSprop(rnn_model.parameters(), lr=0.01)loss_fun = torch.nn.NLLLoss()loss_fun = loss_fun.cuda()rnn_model.load_state_dict(torch.load('./poem_generator_rnn'))  # if you have already trained your model you can load it by this line.for epoch in range(20000):batches_inputs, batches_outputs = generate_batch(BATCH_SIZE, poems_vector, word_to_int)n_chunk = len(batches_inputs)for batch in range(n_chunk):batch_x = batches_inputs[batch]batch_y = batches_outputs[batch]  # (batch , time_step)loss = 0for index in range(BATCH_SIZE):x = np.array(batch_x[index], dtype=np.int64)y = np.array(batch_y[index], dtype=np.int64)x = Variable(torch.from_numpy(np.expand_dims(x, axis=1)))y = Variable(torch.from_numpy(y))x = x.cuda()y = y.cuda()pre = rnn_model(x)loss += loss_fun(pre, y)if index == 0:_, pre = torch.max(pre, dim=1)print('prediction',pre.data.tolist())  # the following  three line can print the output and the predictionprint('b_y       ',y.data.tolist())  # And you need to take a screenshot and then past is to your homework paper.print('*' * 30)loss = loss / BATCH_SIZEprint("epoch  ", epoch, 'batch number', batch, "loss is: ", loss.data.tolist())optimizer.zero_grad()loss.backward()torch.nn.utils.clip_grad_norm(rnn_model.parameters(), 1)optimizer.step()if batch % 20 == 0:torch.save(rnn_model.state_dict(), './poem_generator_rnn')print("finish  save model")def to_word(predict, vocabs):  # 预测的结果转化成汉字sample = np.argmax(predict)if sample >= len(vocabs):sample = len(vocabs) - 1return vocabs[sample]def pretty_print_poem(poem):  # 令打印的结果更工整shige = []for w in poem:if w == start_token or w == end_token:breakshige.append(w)poem_sentences = poem.split('。')for s in poem_sentences:if s != '' and len(s) > 10:print(s + '。')def gen_poem(begin_word):# poems_vector, word_int_map, vocabularies = process_poems2('./tangshi.txt')  #  use the other dataset to train the networkpoems_vector, word_int_map, vocabularies = process_poems1('./poems.txt')word_embedding = rnn_lstm.word_embedding(vocab_length=len(word_int_map) + 1, embedding_dim=100)rnn_model = rnn_lstm.RNN_model(batch_sz=64, vocab_len=len(word_int_map) + 1, word_embedding=word_embedding,embedding_dim=100, lstm_hidden_dim=128)rnn_model.load_state_dict(torch.load('./poem_generator_rnn'))rnn_model = rnn_model.cuda()rnn_model.eval()# 指定开始的字poem = begin_wordword = begin_wordwhile word != end_token:input = np.array([word_int_map[w] for w in poem], dtype=np.int64)input = Variable(torch.from_numpy(input)).cuda()output = rnn_model(input, is_test=True)word = to_word(output.data.tolist()[-1], vocabularies)poem += word# print(word)# print(poem)if len(poem) > 30:breakreturn poem# run_training()  # 如果不是训练阶段 ,请注销这一行 。 网络训练时间很长。pretty_print_poem(gen_poem("日"))
pretty_print_poem(gen_poem("红"))
pretty_print_poem(gen_poem("山"))
pretty_print_poem(gen_poem("夜"))
pretty_print_poem(gen_poem("湖"))
pretty_print_poem(gen_poem("湖"))
pretty_print_poem(gen_poem("湖"))
pretty_print_poem(gen_poem("君"))
import torch.nn as nn
import torch
from torch.autograd import Variable
import torch.nn.functional as Fimport numpy as npdef weights_init(m):classname = m.__class__.__name__  # obtain the class nameif classname.find('Linear') != -1:weight_shape = list(m.weight.data.size())fan_in = weight_shape[1]fan_out = weight_shape[0]w_bound = np.sqrt(6. / (fan_in + fan_out))m.weight.data.uniform_(-w_bound, w_bound)m.bias.data.fill_(0)print("inital  linear weight ")class word_embedding(nn.Module):def __init__(self, vocab_length, embedding_dim):super(word_embedding, self).__init__()w_embeding_random_intial = np.random.uniform(-1, 1, size=(vocab_length, embedding_dim))self.word_embedding = nn.Embedding(vocab_length, embedding_dim)self.word_embedding.weight.data.copy_(torch.from_numpy(w_embeding_random_intial))def forward(self, input_sentence):""":param input_sentence:  a tensor ,contain several word index.:return: a tensor ,contain word embedding tensor"""sen_embed = self.word_embedding(input_sentence)return sen_embedclass RNN_model(nn.Module):def __init__(self, batch_sz, vocab_len, word_embedding, embedding_dim, lstm_hidden_dim):super(RNN_model, self).__init__()self.word_embedding_lookup = word_embeddingself.batch_size = batch_szself.vocab_length = vocab_lenself.word_embedding_dim = embedding_dimself.lstm_dim = lstm_hidden_dim########################################## here you need to define the "self.rnn_lstm"  the input size is "embedding_dim" and the output size is "lstm_hidden_dim"# the lstm should have two layers, and the  input and output tensors are provided as (batch, seq, feature)# ???self.rnn_lstm = nn.LSTM(input_size=self.word_embedding_dim, hidden_size=self.lstm_dim, num_layers=2,batch_first=True)##########################################self.fc = nn.Linear(lstm_hidden_dim, vocab_len)self.apply(weights_init)  # call the weights initial function.self.softmax = nn.LogSoftmax()  # the activation function.# self.tanh = nn.Tanh()def forward(self, sentence, is_test=False):batch_input = self.word_embedding_lookup(sentence).view(1, -1, self.word_embedding_dim)# print(batch_input.size()) # print the size of the input################################################# here you need to put the "batch_input"  input the self.lstm which is defined before.# the hidden output should be named as output, the initial hidden state and cell state set to zero.# ???h0 = torch.zeros(2, 1, self.lstm_dim)c0 = torch.zeros(2, 1, self.lstm_dim)h0 = h0.cuda()c0 = c0.cuda()output, _ = self.rnn_lstm(batch_input, (h0, c0))################################################out = output.contiguous().view(-1, self.lstm_dim)out = F.relu(self.fc(out))out = self.softmax(out)if is_test:prediction = out[-1, :].view(1, -1)output = predictionelse:output = out# print(out)return output

这里能训练,但是loss一直降不下去,同时还会出现梯度爆炸的情况,先放在这里之后调试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/846322.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多元联合分布建模 Copula python实例

多元联合分布建模 Copula python实例 目录 库安装 实例可视化代码 库安装 pip install copulas 实例可视化代码 import numpy as np import pandas as pd from copulas.multivariate import GaussianMultivariate# Generate some example data np.random.seed(42) data = …

ChatTTS:开源最强文本转真人语音工具

目录 1.前言 2.详细介绍 2.1 什么是ChatTTS 2.2 项目地址: 2.3 应用特点: 3.如何安装和使用 3.1.谷歌colab 3.1.1.点击链接 3.1.2 进行保存 3.1.3 按照流程依次点击运行 3.1.4 填写自己需要转的文字 3.2 本地运行 3.2.1 下载或克隆项目源码到本地 3.2.2 …

算法每日一题(python,2024.05.31)

题目来源&#xff08;力扣. - 力扣&#xff08;LeetCode&#xff09;&#xff0c;简单&#xff09; 解题思路&#xff1a; 二次遍历&#xff0c;第一次遍历用哈希表记录每个字母的出现次数&#xff0c;出现一次则将它的value值赋为True&#xff0c;将它的下标赋为key值&#x…

HTTPS加密

一.加密是什么 加密就是把明文(要传输的信息)进行一系列的变换,生成密文. 有加密就有解密,解密就是把密文进行一系列的变换,生成明文. 在这个加密和解密过程中,往往需要一个或多个中间数据,辅助进行这个过程,这样的数据称为密钥. 加密解密到如今已经发展成了一个独立的学科 : 密…

基于Springboot开发的外卖餐购项目(后台管理+消费者端)

免费获取方式↓↓↓ 项目介绍039&#xff1a; 系统运行 后端登录页: http://localhost:8081/backend/page/login/login.html 消费端请求:消费端主页: http://localhost:8081/front/index.html 管理员账号 admin 123456 消费者不需要登录 采用技术栈 前端&#xff1a;Eleme…

力扣20 有效的括号

给定一个只包括 (&#xff0c;)&#xff0c;{&#xff0c;}&#xff0c;[&#xff0c;] 的字符串 s &#xff0c;判断字符串是否有效。 有效字符串需满足&#xff1a; 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一个对应的相同类型的左括…

8月编程语言排行榜:揭秘热门语言背后的力量与魅力

8月编程语言排行榜&#xff1a;揭秘热门语言背后的力量与魅力 随着技术的不断进步和创新&#xff0c;编程语言的世界也在不断变化和演进。每年的8月&#xff0c;全球知名编程社区TIOBE都会公布最新的编程语言排行榜&#xff0c;为我们揭示了哪些语言正在引领着技术的潮流。在这…

【智能算法】红嘴蓝喜鹊优化算法(RBMO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献5.代码获取 1.背景 2024年&#xff0c;S Fu受到自然界中红嘴蓝喜鹊社会行为启发&#xff0c;提出了红嘴蓝喜鹊优化算法&#xff08;Red-billed Blue Magpie Optimizer, RBMO&#xff09;。 2.算法原理 2.1算…

MicroBlaze 处理器参考指南

概述 本章包含MicroBlaze功能的概述和详细信息MicroBlaze架构包括Big-Endian或Little-Endian位反转格式&#xff0c;32位或64位通用寄存器&#xff0c;虚拟内存管理&#xff0c;缓存软件支持&#xff0c;和AXI4-Stream接口 简介 MicroBlaze嵌入式处理器软核是一个精简指令集…

[JS] 前端充分使用console.log()有效输出(2024-6-1)

将变量包装在对象中 不要使用 console.log(url, url2, baz)&#xff0c;而是使用 console.log({ url, url2, baz })。 如果你比较这两者&#xff0c;你会发现这有多么有用&#xff1a;拥有 url 和 url2 键可以避免这两个 URL 之间的混淆。 在日志前加上唯一字符串前缀 在应用…

PCL 指数函数回归(二维)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 指数回归与之前所提到的线性回归类似,我们只需要变换一下指数的形式,如下所示: y = a ∗ e b x y = a * e^{bx}

开箱即用的Spring Boot 企业级开发平台【毕设项目推荐】

项目概述 基于 Spring 实现的通用权限管理平台&#xff08;RBAC模式&#xff09;。整合最新技术高效快速开发&#xff0c;前后端分离模式&#xff0c;开箱即用。 核心模块包括&#xff1a;用户、角色、职位、组织机构、菜单、字典、日志、多应用管理、文件管理、定时任务等功能…

牛客网刷题 | BC107 箭形图案

目前主要分为三个专栏&#xff0c;后续还会添加&#xff1a; 专栏如下&#xff1a; C语言刷题解析 C语言系列文章 我的成长经历 感谢阅读&#xff01; 初来乍到&#xff0c;如有错误请指出&#xff0c;感谢&#xff01; 描述 KiKi学习了循环&am…

【计算机毕业设计】359微信小程序校园失物招领系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

Qt | QFile 类(文件)

01、QFile简介 一、QFile 基本原理 1、QFile 基础 ①、QFile 类继承自 QFileDevice 类,QFileDevice 又继承自 QIODevice类。 ②、QFile 类提供了一个用于读取/写入文件的接口,是一种读写二进制文件、文本、资源的 I/O 设备。 ③、默认情况下 QFile 假定为二进制,即不对存…

WebClient 快速入门 (使用 WebClient 发起 HTTP 请求)

1.简介 执行异步 HTTP 请求&#xff1a;WebClient 允许你发送 GET、POST、PUT、DELETE 等各种 HTTP 请求&#xff0c;并且这些请求都是异步的&#xff0c;不会阻塞调用线程。 处理响应&#xff1a;你可以使用 WebClient 来处理 HTTP 响应&#xff0c;包括获取响应体、响应头和…

Ubuntu系统中的输入法

在Ubuntu中安装了搜狗拼音输入法后&#xff0c;想要使用它&#xff0c;可以按照以下步骤进行操作&#xff1a; 1. 安装Fcitx输入法框架&#xff08;如果尚未安装&#xff09; 打开终端&#xff08;Terminal&#xff09;。执行以下命令以更新软件源&#xff08;确保软件列表是…

Android学习之ION memory manager

目录 what is ION? ION原理 ION数据结构 用户空间 API ION API what is ION? ION是Google的内存管理器&#xff0c;用来支持不同的内存分配机制&#xff0c;如CARVOUT(PMEM)&#xff0c;物理连续内存(kmalloc), 虚拟地址连续但物理不连续内存(vmalloc)&#xff0c; IOM…

智慧校园的应用场景有哪些

在21世纪的教育挑战中&#xff0c;如何利用科技手段优化教育资源分配&#xff0c;提升教学质量&#xff1f;智慧校园给出了答案。基于信息化的教育改革&#xff0c;智慧校园不仅提升了校园管理的效率&#xff0c;更通过一系列智能化应用&#xff0c;重塑了教学、学习和交流的方…

搭建大型分布式服务(三十八)SpringBoot 整合多个kafka数据源-支持protobuf

系列文章目录 文章目录 系列文章目录前言一、本文要点二、开发环境三、原项目四、修改项目五、测试一下五、小结 前言 本插件稳定运行上百个kafka项目&#xff0c;每天处理上亿级的数据的精简小插件&#xff0c;快速上手。 <dependency><groupId>io.github.vipjo…