yolov10/v8 loss详解

v10出了就想看看它的loss设计有什么不同,看下来由于v8和v10的loss部分基本一致就放一起了。

v10的论文笔记,还没看的可以看看,初步尝试耗时确实有提升

好记性不如烂笔头,还是得记录一下,以免忘了,废话结束!!!


代码地址:GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

论文地址:https://arxiv.org/pdf/2405.14458

        YOLOv10/8从Anchor-Based(box anchor)换成了Anchor-Free(point anchor),检测头也换成了Decoupled Head,这一结构具有提高收敛速度的好处,(在box anchor 方案中试过精度也有提升,但耗时增加了一些)但另一方面讲,也会遇到分类与回归不对齐的问题。在一些网络中,会通过将feature map中的cell(point anchor中心点所编码的box)与ground truth进行IOU计算以分配预测所用cell,但用来分类和回归的最佳cell通常不一致。为了解决这一问题,引入了TAL(Task Alignment Learning)来负责正负样本分配,使得分类和回归任务之间具有较高的对齐一致性。

yolov10/v8中的loss主要分为2部分3个loss:

一、回归分支的损失函数:

1、DFL(Distribution Focal Loss),计算anchor point的中心点到左上角和右下角的偏移量

2、IoU Loss,定位损失,采用CIoU loss,只计算正样本的定位损失

二、分类损失:

1、分类损失,采用BCE loss,只计算正样本的分类损失。


v8DetectionLoss

v8和v10的loss最大的不同在于,v10有两个解耦头,一个计算one2one head,一个计算one2many head,但是两个head的loss函数一样,就是超参数有一些不同

class v10DetectLoss:def __init__(self, model):self.one2many = v8DetectionLoss(model, tal_topk=10)self.one2one = v8DetectionLoss(model, tal_topk=1)def __call__(self, preds, batch):one2many = preds["one2many"]loss_one2many = self.one2many(one2many, batch)one2one = preds["one2one"]loss_one2one = self.one2one(one2one, batch)return loss_one2many[0] + loss_one2one[0], torch.cat((loss_one2many[1], loss_one2one[1]))

one2many的topk为10,one2one的topk为1。(这部分代码和我写辅助监督的方式一样)

class v8DetectionLoss:"""Criterion class for computing training losses."""def __init__(self, model, tal_topk=10):  # model must be de-paralleled"""Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""device = next(model.parameters()).device  # get model deviceh = model.args  # hyperparametersm = model.model[-1]  # Detect() moduleself.bce = nn.BCEWithLogitsLoss(reduction="none")self.hyp = hself.stride = m.stride  # model stridesself.nc = m.nc  # number of classesself.no = m.noself.reg_max = m.reg_maxself.device = deviceself.use_dfl = m.reg_max > 1self.assigner = TaskAlignedAssigner(topk=tal_topk, num_classes=self.nc, alpha=0.5, beta=6.0)self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)def preprocess(self, targets, batch_size, scale_tensor):"""Preprocesses the target counts and matches with the input batch size to output a tensor."""if targets.shape[0] == 0:out = torch.zeros(batch_size, 0, 5, device=self.device)else:i = targets[:, 0]  # image index_, counts = i.unique(return_counts=True)counts = counts.to(dtype=torch.int32)out = torch.zeros(batch_size, counts.max(), 5, device=self.device)for j in range(batch_size):matches = i == jn = matches.sum()if n:out[j, :n] = targets[matches, 1:]out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))return outdef bbox_decode(self, anchor_points, pred_dist):"""Decode predicted object bounding box coordinates from anchor points and distribution."""if self.use_dfl:b, a, c = pred_dist.shape  # batch, anchors, channelspred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)return dist2bbox(pred_dist, anchor_points, xywh=False)def __call__(self, preds, batch):"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""loss = torch.zeros(3, device=self.device)  # box, cls, dflfeats = preds[1] if isinstance(preds, tuple) else predspred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split((self.reg_max * 4, self.nc), 1)pred_scores = pred_scores.permute(0, 2, 1).contiguous()pred_distri = pred_distri.permute(0, 2, 1).contiguous()dtype = pred_scores.dtypebatch_size = pred_scores.shape[0]imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)# Targetstargets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxymask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)# Pboxespred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)_, target_bboxes, target_scores, fg_mask, _ = self.assigner(pred_scores.detach().sigmoid(),(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),anchor_points * stride_tensor,gt_labels,gt_bboxes,mask_gt,)target_scores_sum = max(target_scores.sum(), 1)# Cls loss# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL wayloss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE# Bbox lossif fg_mask.sum():target_bboxes /= stride_tensorloss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask)loss[0] *= self.hyp.box  # box gainloss[1] *= self.hyp.cls  # cls gainloss[2] *= self.hyp.dfl  # dfl gainreturn loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

v8DetectionLoss中preprocess

该函数主要是用来处理gt,将同一batch中不同长度的gt(cls + boxes)做对齐,短的gt用全0补齐。假设一个batch为2,其中image1的gt是[4,5],image2的gt是[7,5],那么取该batch中最长的7创建一个batch为2的张量[2,7,5],batch1的前四维为gt信息,为全0。下面用一组实际数据为例:

 对应的gt_labels,gt_bboxes,mask_gt(之后会提到)


v8DetectionLoss中bbox_decode

该函数主要是将每一个anchor point和预测的回归参数通过dist2bbox做解码,生成anchor box与gt计算iou

def dist2bbox(distance, anchor_points, xywh=True, dim=-1):"""Transform distance(ltrb) to box(xywh or xyxy)."""assert(distance.shape[dim] == 4)lt, rb = distance.split([2, 2], dim)x1y1 = anchor_points - ltx2y2 = anchor_points + rbif xywh:c_xy = (x1y1 + x2y2) / 2wh = x2y2 - x1y1return torch.cat((c_xy, wh), dim)  # xywh bboxreturn torch.cat((x1y1, x2y2), dim)  # xyxy bbox

loss[1] bce loss对应类别损失
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCEloss[0] 对应iou loss
loss[2] 对应dfl loss
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask)

bbox loss的实现如下:

class BboxLoss(nn.Module):"""Criterion class for computing training losses during training."""def __init__(self, reg_max, use_dfl=False):"""Initialize the BboxLoss module with regularization maximum and DFL settings."""super().__init__()self.reg_max = reg_maxself.use_dfl = use_dfldef forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):"""IoU loss."""weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum# DFL lossif self.use_dfl:target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weightloss_dfl = loss_dfl.sum() / target_scores_sumelse:loss_dfl = torch.tensor(0.0).to(pred_dist.device)return loss_iou, loss_dfl@staticmethoddef _df_loss(pred_dist, target):"""Return sum of left and right DFL losses.Distribution Focal Loss (DFL) proposed in Generalized Focal Losshttps://ieeexplore.ieee.org/document/9792391"""tl = target.long()  # target lefttr = tl + 1  # target rightwl = tr - target  # weight leftwr = 1 - wl  # weight rightreturn (F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl+ F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr).mean(-1, keepdim=True)

TaskAlignedAssigner

这个我认为是整个loss设计中的重头戏

因为整个loss中不像anchor base算法中需要计算前背景的obj loss,所以在TaskAlignedAssigner中需要确定哪些anchor属于前景哪些anchor属于背景,所以TaskAlignedAssigner得到target_labels, target_bboxes, target_scores的同时还需要得到前景的mask--fg_mask.bool()

class TaskAlignedAssigner(nn.Module):"""A task-aligned assigner for object detection.This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric, which combines bothclassification and localization information.Attributes:topk (int): The number of top candidates to consider.num_classes (int): The number of object classes.alpha (float): The alpha parameter for the classification component of the task-aligned metric.beta (float): The beta parameter for the localization component of the task-aligned metric.eps (float): A small value to prevent division by zero."""def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):"""Initialize a TaskAlignedAssigner object with customizable hyperparameters."""super().__init__()self.topk = topkself.num_classes = num_classesself.bg_idx = num_classesself.alpha = alphaself.beta = betaself.eps = eps@torch.no_grad()def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):"""Compute the task-aligned assignment. Reference code is available athttps://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py.Args:pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)anc_points (Tensor): shape(num_total_anchors, 2)gt_labels (Tensor): shape(bs, n_max_boxes, 1)gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)mask_gt (Tensor): shape(bs, n_max_boxes, 1)Returns:target_labels (Tensor): shape(bs, num_total_anchors)target_bboxes (Tensor): shape(bs, num_total_anchors, 4)target_scores (Tensor): shape(bs, num_total_anchors, num_classes)fg_mask (Tensor): shape(bs, num_total_anchors)target_gt_idx (Tensor): shape(bs, num_total_anchors)"""self.bs = pd_scores.shape[0]self.n_max_boxes = gt_bboxes.shape[1]if self.n_max_boxes == 0:device = gt_bboxes.devicereturn (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),torch.zeros_like(pd_bboxes).to(device),torch.zeros_like(pd_scores).to(device),torch.zeros_like(pd_scores[..., 0]).to(device),torch.zeros_like(pd_scores[..., 0]).to(device),)mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt)target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)# Assigned targettarget_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)# Normalizealign_metric *= mask_pospos_align_metrics = align_metric.amax(dim=-1, keepdim=True)  # b, max_num_objpos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True)  # b, max_num_objnorm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)target_scores = target_scores * norm_align_metricreturn target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx

get_pos_mask

    def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):"""Get in_gts mask, (b, max_num_obj, h*w)."""mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)  # 表示anchor中心是否位于对应的ground truth bounding box内# Get anchor_align metric, (b, max_num_obj, h*w)align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)# Get topk_metric mask, (b, max_num_obj, h*w)mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())# Merge all mask to a final mask, (b, max_num_obj, h*w)mask_pos = mask_topk * mask_in_gts * mask_gt  # 一个anchor point 负责一个gt object的预测return mask_pos, align_metric, overlaps

其中包含select_candidates_in_gts,get_box_metrics,select_topk_candidates,由这三个函数共同选择正样本anchor point的位置

    def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):"""Select the positive anchor center in gt.Args:xy_centers (Tensor): shape(h*w, 2)gt_bboxes (Tensor): shape(b, n_boxes, 4)Returns:(Tensor): shape(b, n_boxes, h*w)"""n_anchors = xy_centers.shape[0]  # 表示anchor中心的数量bs, n_boxes, _ = gt_bboxes.shapelt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2)  # left-top, right-bottom# 通过计算每个anchor中心与每个gt_bboxes的左上角和右下角之间的差值,以及右下角和左上角之间的差值,并将结果拼接为形状为 (bs, n_boxes, n_anchors, -1) 的张量。bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1) # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)# 计算 bbox_deltas 张量沿着第3个维度的最小值,形状为 (b, n_boxes, h*w) 的布尔型张量,表示anchor中心是否位于对应的ground truth bounding box内(最小值都为正数)return bbox_deltas.amin(3).gt_(eps) 

实现思想很简单就是,将anchor point的坐标与gt box的左上角坐标相减,得到一个差值,同时gt box右下角的坐标与anchor point的坐标相减,同样得到一个差值,如果anchor point位于gt box内,那么这两组差值的数值都应该是大于0的数。

select_candidates_in_gts用于初步筛选位于gt box中的anchor points

如上图,假设绿色的为gt box,红色的anchor points就是通过 select_candidates_in_gts筛选出来用于预测该gt box表示的object的可能的anchor point,最后返回的是关于这些anchor point的位置mask


get_box_metrics

它具有如下参数:

pd_scores:就是分类head输出的结果,shape一般为[bs, 8400, 80](以coco数据集,输入640*640为例)

pd_bboxes:回归head输出的结果,shape一般为[bs, 8400, 4]

gt_labels,gt_bboxes,mask_gt为gt所包含的信息,由于gt有做过数据用0补齐,mask_gt表示实际上非零的数据

mask_in_gts * mask_gt:表示实际上有gt标签位置上的候选anchor的位置的mask

    def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt):"""Compute alignment metric given predicted and ground truth bounding boxes."""na = pd_bboxes.shape[-2]mask_gt = mask_gt.bool()  # b, max_num_obj, h*woverlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)  # 存储ioubbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)  # 存储边界框的分数ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long)  # torch.Size([2, 2, 7]) * 0 # 2, b, max_num_objind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes)  # b, max_num_obj # 批次信息 为从0到 self.bs-1 的序列,将其展开为形状为 (self.bs, self.n_max_boxes)ind[1] = gt_labels.squeeze(-1)  # b, max_num_obj # 类别信息 为 gt_labels 的挤压操作(squeeze(-1)),将其形状变为 (self.bs, self.n_max_boxes)# Get the scores of each grid for each gt clsbbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt]  # b, max_num_obj, h*w 根据实际边界框的掩码来获取每个网格单元的预测分数,并存储在 bbox_scores 中# (b, max_num_obj, 1, 4), (b, 1, h*w, 4)pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt]gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt]overlaps[mask_gt] = self.iou_calculation(gt_boxes, pd_boxes)# 对于满足实际边界框掩码的每个位置,从 pd_bboxes 中获取预测边界框(pd_boxes)和实际边界框(gt_boxes)计算iou,并将结果存储在 overlaps 中align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) # align_metric = bbox_scores^alpha * overlaps^beta 计算对齐度量,其中 alpha 和 beta 是超参数return align_metric, overlaps

通过iou计算预测框(解码后的)与gt box之间的iou得到overlap;由于每个anchor point都有80个类别的预测得分,通过该处gt box对应的类别标签得到预测得分,得到bbox_scores,通过align_metric = bbox_scores^alpha * overlaps^beta 计算对齐度量。该度量同时考虑得分和框的重叠度。


select_topk_candidates

就是通过get_box_metrics中得到的align_metric来确定所有与gt有重叠的anchor中align_metric最高的前十(或前一)

    def select_topk_candidates(self, metrics, largest=True, topk_mask=None):"""Select the top-k candidates based on the given metrics.Args:metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size,max_num_obj is the maximum number of objects, and h*w represents thetotal number of anchor points.largest (bool): If True, select the largest values; otherwise, select the smallest values.topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), wheretopk is the number of top candidates to consider. If not provided,the top-k values are automatically computed based on the given metrics.Returns:(Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates."""# (b, max_num_obj, topk)# 使用 torch.topk 函数在给定的度量指标张量 metrics 的最后一个维度上选择前 k 个最大。# 这将返回两个张量:topk_metrics (形状为 (b, max_num_obj, topk)) 包含了选定的度量指标,以及 topk_idxs (形状为 (b, max_num_obj, topk)) 包含了相应的索引topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)if topk_mask is None:topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)# (b, max_num_obj, topk)topk_idxs.masked_fill_(~topk_mask, 0)  # 使用 topk_mask 将 topk_idxs 张量中未选中的索引位置(~topk_mask)用零进行填充# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)for k in range(self.topk):# Expand topk_idxs for each value of k and add 1 at the specified positionscount_tensor.scatter_add_(-1, topk_idxs[:, :, k : k + 1], ones) # 使用 scatter_add_ 函数根据索引 topk_idxs[:, :, k : k + 1],将 ones 张量的值相加到 count_tensor 张量的相应位置上# count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))# Filter invalid bboxescount_tensor.masked_fill_(count_tensor > 1, 0) # 将 count_tensor 中大于 1 的值用零进行填充,以过滤掉超过一个的边界框return count_tensor.to(metrics.dtype)

比如上图,由于这里只是作为示例,只表示其中一个特征图上gt样例,其他层的gt位置可能有更多的anchor point满足 align_metric的条件被保留下来(不必太纠结这里是不是有10个),因为PAN输出了三层特征图,anchor对应每层特征图的中心,而实践中将每层的anchor展平之后合并在一起得到8400的长度,而最终是在这8400中取前十的anchor,所以每层特征图上保留的anchor可能数量不等。

此时被保留下来的anchor point的位置用1表示,其余位置为0,仅保留了指标前十的样本作为正样本


select_highest_overlaps

    def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):"""If an anchor box is assigned to multiple gts, the one with the highest IoU will be selected.Args:mask_pos (Tensor): shape(b, n_max_boxes, h*w)overlaps (Tensor): shape(b, n_max_boxes, h*w)Returns:target_gt_idx (Tensor): shape(b, h*w)fg_mask (Tensor): shape(b, h*w)mask_pos (Tensor): shape(b, n_max_boxes, h*w)"""# (b, n_max_boxes, h*w) -> (b, h*w)fg_mask = mask_pos.sum(-2)  # 对 mask_pos 沿着倒数第二个维度求和,得到形状为 (b, h*w) 的张量 fg_mask,表示每个网格单元上非背景anchor box的数量if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxes# 创建一个布尔型张量 mask_multi_gts,形状为 (b, n_max_boxes, h*w),用于指示哪些网格单元拥有多个ground truth bounding boxesmask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1)  # (b, n_max_boxes, h*w)# 获取每个网格单元上具有最高IoU的ground truth bounding box的索引,并创建一个张量 is_max_overlaps,形状与 mask_pos 相同,# 其中最高IoU的ground truth bounding box对应的位置上为1,其余位置为0。max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)  # max_overlaps_idx表示具有最大iou的索引,将具有最大iou的位置设置为1# 根据 mask_multi_gts 来更新 mask_pos。对于存在多个ground truth bounding box的网格单元,将 is_max_overlaps 中# 对应位置的值赋给 mask_pos,以保留具有最高IoU的ground truth bounding box的匹配情况mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float()  # (b, n_max_boxes, h*w)fg_mask = mask_pos.sum(-2)# Find each grid serve which gt(index)target_gt_idx = mask_pos.argmax(-2)  # (b, h*w) # 得到每个网格单元上具有最高IoU的ground truth bounding box的索引 target_gt_idxreturn target_gt_idx, fg_mask, mask_pos

对被分配了多个gt的anchor去重,得到前景的mask以及anchor point上具有最高IoU的ground truth bounding box的索引。假设上图中红色的anchor被分配给了两个gt,通select_highest_overlaps后会保留gt与该anchor的iou最大的那个,并用该anchor来预测该gt,另一个gt则可能会被周围的其他anchor所负责。此时也要更新mask_pos,毕竟重新对anchor做了处理。

因为每个anchor负责一个类别的检测,mask_pos表示最终确定的anchor的mask,如下图所示为其中一个batch中数据形式

该batch中8240,8241,8242为最终确定的anchor,其在红色箭头所示维度上对应的索引为2,target_gt_idx在该batch上的最终表示为:


get_targets

有了以上的信息之后就获取gt了

    def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):"""Compute target labels, target bounding boxes, and target scores for the positive anchor points.Args:gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is thebatch size and max_num_obj is the maximum number of objects.gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4).target_gt_idx (Tensor): Indices of the assigned ground truth objects for positiveanchor points, with shape (b, h*w), where h*w is the totalnumber of anchor points.fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive(foreground) anchor points.Returns:(Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors:- target_labels (Tensor): Shape (b, h*w), containing the target labels forpositive anchor points.- target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxesfor positive anchor points.- target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scoresfor positive anchor points, where num_classes is the numberof object classes."""# Assigned target labels, (b, 1)batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]# 使用 target_gt_idx 加上偏移量,得到形状为 (b, h*w) 的 target_gt_idx 张量,表示正样本anchor point的真实类别索引target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes  # (b, h*w)# 使用 flatten 函数将 gt_labels 张量展平为形状为 (b * max_num_obj) 的张量,然后使用 target_gt_idx 进行索引,# 得到形状为 (b, h*w) 的 target_labels 张量,表示正样本anchor point的目标标签target_labels = gt_labels.long().flatten()[target_gt_idx]  # (b, h*w)# Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx]  # 表示正样本anchor point的目标边界框# Assigned target scorestarget_labels.clamp_(0)# 10x faster than F.one_hot()target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),dtype=torch.int64,device=target_labels.device,)  # (b, h*w, 80)target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)  # 使用 scatter_ 函数将 target_labels 的值进行 one-hot 编码,将张量中每个位置上的目标类别置为 1fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)  # (b, h*w, 80)target_scores = torch.where(fg_scores_mask > 0, target_scores, 0) # 根据 fg_scores_mask 的值,将 target_scores 张量中的非正样本位置(值小于等于 0)即背景类置为零return target_labels, target_bboxes, target_scores

该函数的要点基本都在代码里注释了

得到target后还要对target_scores做一些归一化操作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/846193.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【基础算法总结】模拟算法

模拟算法 1.替换所有的问号2.提莫攻击3.Z 字形变换4.外观数列5.数青蛙 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励,我们一起努力吧!😃😃 模拟算法 —> 比葫芦…

Python魔法之旅-魔法方法(10)

目录 一、概述 1、定义 2、作用 二、应用场景 1、构造和析构 2、操作符重载 3、字符串和表示 4、容器管理 5、可调用对象 6、上下文管理 7、属性访问和描述符 8、迭代器和生成器 9、数值类型 10、复制和序列化 11、自定义元类行为 12、自定义类行为 13、类型检…

07.与jenkins集成实现cicd

7.与jenkins集成实现ci/cd ip地址服务内存192.168.111.11kube-apiserver 80801G192.168.111.13k8s-node22G192.168.111.14jenkins(tomcat jdk) 8080 kubelet docker1G192.168.111.15gitlab 8080,80 docker2G 通过jenkins一键操作实现发布服务,jenkins对接k8s …

简单的小波自编码器降噪(Python)

代码很简单,很容易读懂。 import kerasfrom keras import layersfrom keras.datasets import mnistimport numpy as npimport matplotlib.pyplot as pltimport pywtimport tensorflow as tfimport torch#加载经典的mnist手写数字图像(x_train, _), (x_test, _) mn…

基于Chisel的FPGA流水灯设计

Chisel流水灯 一、Chisel(一)什么是Chisel(二)Chisel能做什么(三)Chisel的使用(四)Chisel的优缺点1.优点2.缺点 二、流水灯设计 一、Chisel (一)什么是Chise…

uniapp 怎么设置凸起的底部tabbar

1. uniapp 怎么设置凸起的底部tabbar 1.1. 方案一系统提供 1.1.1. 使用uniapp官方提供的属性midButton 使用时,list数组须为偶数 (1)pages.json "tabBar": {"custom": true,"color": "#8F8F94",&q…

HTML的标签(标题、段落、文本、图片、列表)

HTML的标签1 标题标签:段落标签:文本标签:图片标签:列表标签:有序列表:无序列表:定义列表:列表案例: 标题标签: 标签:h1~h6 注意:如果使用无效标…

【安规介绍】

文章目录 一、基础知识安规上的六类危险的防护:安全电压漏电流接触电流能量问题:火灾问题:热问题结构问题阻燃等级绝缘等级:对接地系统的要求:结构要求:电气要求: 二、设计的关键电气绝缘距离电气爬电距离:…

Python知识点14---被规定的资源

提前说一点:如果你是专注于Python开发,那么本系列知识点只是带你入个门再详细的开发点就要去看其他资料了,而如果你和作者一样只是操作其他技术的Python API那就足够了。 在Python中被规定的东西不止有常识中的那些关键字、构造器等编程语言…

乡村振兴与农村环境整治:加强农村环境治理,改善农村人居环境,打造干净整洁、生态宜居的美丽乡村

目录 一、引言 二、农村环境整治的重要性 1、提升农民生活质量 2、促进农村经济发展 3、保护农村生态环境 三、当前农村环境面临的问题 1、垃圾处理不当 2、污水处理设施缺乏 3、农业面源污染严重 四、加强农村环境治理的措施 1、完善农村垃圾处理体系 2、加强农村…

14.Ollydbg的基本使用

上一个内容:13.优化界面化的游戏辅助 Ollydbg是一个调试工具,它可以一步一步的运行一个程序并且还能很直观的看到被调试程序的寄存器状态、栈状态。Ollydbg需要以管理员方式运行! 下图附加程序是调试一个正在运行的进程: 点击了…

文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑动态定价的新能源汽车能源站优化运行》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

Nacos-SpringBoot-配置中心

Nacos配置中心 前情回顾 上一章呢 了解并且学习了Nacos服务注册与发现 在一系列破防中走了出来Nacos服务注册完成https://blog.csdn.net/m0_68711597/article/details/139265244?spm1001.2014.3001.5502 本以为接下来会一帆风顺 一马平川 没想刚出坑 又入坑 Nacos的配置…

Prime1 - 信息收集和分析能力的试炼

主机发现 nmap扫描与分析 端口22、80 详细扫描;linux、ubuntu、 udp扫描 端口都是关闭的 脚本扫描 web渗透 打开只有一张图片;源码有图片和一个alt:hnp security不知道有啥用,先记录下来吧 继续web渗透思路走吧,目录…

[Python]用Qt6和Pillow实现截图小工具

本文章主要讲述的内容是,使用python语言借助PyQt6和Pillow库进行简单截图工具的开发,含义一个简单的范围裁剪和软件界面。 主要解决的问题是,在高DPI显示屏下,坐标点的偏差导致QWidget显示图片不全、剪裁范围偏差问题。 适合有一点…

vivado BD_ADDR_SEG

按字母顺序排列的一类对象列表 BD_ADDR_SEG 描述 地址段或bd_addr_seg对象描述一个范围的位置和大小记忆力它们有一个范围(大小)和一个可选的起始偏移。对于各种内存映射的主接口和从接口,IP集成商遵循行业用于捕获存储器要求和能力的标准IP-…

数据库与缓存⼀致性⽅案

数据库与缓存⼀致性⽅案 1、背景2、数据⼀致性⽅案设计3、数据⼀致性⽅案流程图4、关键代码4.1、 处理数据⼀致性的消息队列⼊⼝4.2、数据⼀致性配置的常量信息 1、背景 现有的业务场景下,都会涉及到数据库以及缓存双写的问题,⽆论是先删除缓存&#xf…

【移动端】商场项目路由设计

1:路由设计配置: 一级路由配置 分析项目,设计路由,配置一级路由 一级路由:单个页面独立展示的,都是一级路由,例如:登录页面,首页架子,报错页面 二级路由&…

美业SaaS收银系统源码-已过期卡项需要延期怎么操作?美业系统实操

美业SaaS系统 连锁多门店美业收银系统源码 多门店管理 / 会员管理 / 预约管理 / 排班管理 / 商品管理 / 促销活动 PC管理后台、手机APP、iPad APP、微信小程序 1.询问会员手机号和需要延期的卡项 2.PC运营后端-数据导入-修改已售卡项,搜索手机号 3.把需要卡项选…

深入分析 Android BroadcastReceiver (一)

文章目录 深入分析 Android BroadcastReceiver (一)1. Android BroadcastReceiver 设计说明1.1 BroadcastReceiver 的主要用途 2. BroadcastReceiver 的工作机制2.1 注册 BroadcastReceiver2.1.1 静态注册2.1.2 动态注册 3. BroadcastReceiver 的生命周期4. 实现和使用 Broadca…