Pytorch-Lighting使用教程(MNIST为例)

一、pytorch-lighting简介

1.1 pytorch-lighting是什么

pytorch-lighting(简称pl),基于 PyTorch 的框架。它的核心思想是,将学术代码模型定义、前向 / 反向、优化器、验证等)与工程代码for-loop,保存、tensorboard 日志、训练策略等)解耦开来,使得代码更为简洁清晰。

工程代码经常会出现在深度学习代码中,PyTorch Lightning 对这部分逻辑进行了封装,只需要在 Trainer 类中简单设置即可调用,无需重复造轮子。

1.2 pytorch-lighting优势

  • 通过抽象出样板工程代码,可以更容易地识别和理解ML代码;
  • Lightning的统一结构使得在现有项目的基础上进行构建和理解变得非常容易;
  • Lightning 自动化的代码是用经过全面测试、定期维护并遵循ML最佳实践的高质量代码构建的;

pytorch-lighting最大的好处:

(1)是摆脱了硬件依赖,不需要在程序中显式设置.cuda() 等,PyTorch Lightning 会自动将模型、张量的设备放置在合适的设备;移除.train() 等代码,这也会自动切换

(2)支持分布式训练,自动分配资源,能够很好的进行大规模的DL训练

(3)代码量较少,只需要关心关键的逻辑代码,而框架性的东西,pytorch-lighting已经帮你解决(如自动训练,自动debug)


二、基于Pytorch-Lighting框架训练MNIST模型

1、仅仅训练

下载的所有的数据集都用于训练(没有评估和测试过程,不清楚模型的好与坏)。

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as pl# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)return loss# 3.3 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 开始训练
trainer = pl.Trainer(max_epochs=10)
trainer.fit(model=autoencoder, train_dataloaders=train_loader)

class LitAutoEncoder(pl.LightningModule):

  • 将模型定义代码写在__init__
  • 定义前向传播逻辑
  • 将优化器代码写在 configure_optimizers 钩子中
  • 训练代码写在 training_step 钩子中,可使用 self.log 随时记录变量的值,会保存在 tensorboard 中
  • 验证代码写在 validation_step 钩子中
  • 移除硬件调用.cuda() 等,PyTorch Lightning 会自动将模型、张量的设备放置在合适的设备;移除.train() 等代码,这也会自动切换
  • 根据需要,重写其他钩子函数,例如 validation_epoch_end,对 validation_step 的结果进行汇总;train_dataloader,定义训练数据的加载逻辑
  • 实例化 Lightning Module 和 Trainer 对象,传入数据集
  • 定义训练参数和回调函数,例如训练设备、数量、保存策略,Early Stop、半精度等

运行结果:

2、添加验证和测试模块

在训练之后,加入了测试和评估功能,能更好的指导模型的性能。

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as plimport torch.utils.data as data
from torchvision import datasets
import torchvision.transforms as transformsfrom torch.utils.data import DataLoader# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)return loss# 3.3 测试过程设置def test_step(self, batch, batch_idx):# this is the test loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)test_loss = F.mse_loss(x_hat, x)self.log("test_loss", test_loss)# 3.4 验证过程设置def validation_step(self, batch, batch_idx):# this is the validation loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)val_loss = F.mse_loss(x_hat, x)self.log("val_loss", val_loss)# 3.5 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
'''
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)
'''# 4.1 分别下载并加载训练集和测试集
transform = transforms.ToTensor()
train_set = datasets.MNIST(os.getcwd(), download=False, train=True, transform=transform)
test_set = datasets.MNIST(os.getcwd(), download=False, train=False, transform=transform)# 4.2 将训练集中的20%用于验证集
train_set_size = int(len(train_set) * 0.8)
valid_set_size = len(train_set) - train_set_size# 4.3 设置种子
seed = torch.Generator().manual_seed(42)# 4.4 从训练集中随机拿到80%的测试集和20%的验证集
train_set, valid_set = data.random_split(train_set, [train_set_size, valid_set_size], generator=seed)# 4.5 分别加载训练集和测试集
train_loader = DataLoader(train_set)
valid_loader = DataLoader(valid_set)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 实例化Trainer
trainer = pl.Trainer(max_epochs=10)# 7. 开始训练和评估
trainer.fit(autoencoder, train_loader, valid_loader)# 8.开始测试
trainer.test(model=autoencoder, dataloaders=DataLoader(test_set))

3、权重 & 超参的保存和加载

当模型正在训练时,性能会随着它继续看到更多数据而发生变化。

1)训练完成后,使用在训练过程中发现的最佳性能相对应的权重;

2)权重可以让训练在训练过程中断的情况下从原来的位置恢复。

保存权重:Lightning 会自动为你在当前工作目录下保存一个权重,其中包含上一次训练的状态。这能确保在训练中断的情况下恢复训练。

3.1 自动在当前目录下保存checkpoint

# simply by using the Trainer you get automatic checkpointing
trainer = Trainer()

3.2 指定checkpoint保存的目录

# saves checkpoints to 'some/path/' at every epoch end
trainer = Trainer(default_root_dir="some/path/")

3.3 加载checkpoint

# trainer.fit(autoencoder, train_loader, valid_loader, ckpt_path="/home/gvlib_ljh/class/Lightning_mnist/lightning_logs/version_25/checkpoints/epoch=9-step=160000.ckpt")

4、可视化

在模型开发中,我们跟踪感兴趣的值,例如validation_loss,以可视化模型的学习过程。模型开发就像驾驶一辆没有窗户的汽车,图表和日志提供了了解汽车行驶方向的窗口。借助 Lightning,可以可视化任何您能想到的东西:数字、文本、图像、音频。

要跟踪指标,只需使用 LightningModule 内可用的 self.log 方法。

class LitModel(pl.LightningModule):def training_step(self, batch, batch_idx):value = ...self.log("some_value", value)

同时记录多个指标:

values = {"loss": loss, "acc": acc, "metric_n": metric_n}  # add more items if needed
self.log_dict(values)

4.1 命令行查看

要在命令行进度栏中查看指标,请将 prog_bar 参数设置为 True。

self.log(..., prog_bar=True)

4.2 浏览器查看

默认情况下,Lightning 使用 Tensorboard(如果可用)和一个简单的 CSV 记录器

在命令行中输入(注意:一定是lightning_logs所在的目录):

tensorboard --logdir=lightning_logs/

Tensorboard界面:

Tensorboard输出分析:

完整的代码:

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as plimport torch.utils.data as data
from torchvision import datasets
import torchvision.transforms as transformsfrom torch.utils.data import DataLoaderfrom pytorch_lightning.loggers import TensorBoardLogger# 设置浮点矩阵乘法精度为 'medium'
torch.set_float32_matmul_precision('medium')# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)batch_idx_value = batch_idx + 1print(" ")values = {"loss": loss, "batch_idx_value": batch_idx_value}  # add more items if neededself.log_dict(values)# 在命令行界面显示log'''sync_dist=True:分布式计算,数据同步标志prog_bar=True:在控制台上显示'''self.log("train_loss", loss, sync_dist=True, prog_bar=True)return loss# 3.3 测试过程设置def test_step(self, batch, batch_idx):x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)test_loss = F.mse_loss(x_hat, x)self.log("test_loss", test_loss, sync_dist=True, prog_bar=True)# 3.4 验证过程设置def validation_step(self, batch, batch_idx):# this is the validation loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)val_loss = F.mse_loss(x_hat, x)self.log("val_loss", val_loss, sync_dist=True, prog_bar=True)# 3.5 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
'''
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)
'''# 4.1 分别下载并加载训练集和测试集
transform = transforms.ToTensor()
train_set = datasets.MNIST(os.getcwd(), download=False, train=True, transform=transform)
test_set = datasets.MNIST(os.getcwd(), download=False, train=False, transform=transform)# 4.2 将训练集中的20%用于验证集
train_set_size = int(len(train_set) * 0.8)
valid_set_size = len(train_set) - train_set_size# 4.3 设置种子
seed = torch.Generator().manual_seed(42)# 4.4 从训练集中随机拿到80%的测试集和20%的验证集
train_set, valid_set = data.random_split(train_set, [train_set_size, valid_set_size], generator=seed)# 4.5 分别加载训练集和测试集
train_loader = DataLoader(train_set, batch_size=256, num_workers=5)
valid_loader = DataLoader(valid_set, batch_size=128, num_workers=5)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 实例化Trainer
trainer = pl.Trainer(max_epochs=1000)# 7. 开始训练和评估
trainer.fit(autoencoder, train_loader, valid_loader)
# 7. 从checkpoint恢复状态
# trainer.fit(autoencoder, train_loader, valid_loader, ckpt_path="/home/gvlib_ljh/class/Lightning_mnist/lightning_logs/version_25/checkpoints/epoch=9-step=160000.ckpt")# 8.开始测试
trainer.test(model=autoencoder, dataloaders=DataLoader(test_set))

参考:

https://zhuanlan.zhihu.com/p/659631467

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/845725.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Anthropic公司CEO谈AI发展:Cluade安全超过商业利益

Anthropic公司今年3月发布的超越GPT-4模型Claude3 opus,成功吸引了大量GPT-4用户“叛变”。 作为OpenAI的头号劲敌,Claude3发布方Anthropic公司的联合创始人兼CEO,达里奥阿莫迪(DarioAmodei)承诺:在能够制…

生信分析进阶4 - 比对结果的FLAG和CIGAR信息含义与BAM文件指定区域提取

BAM文件时存储比对数据的常用格式,可用于短reads和长reads数据。BAM是二进制压缩格式,SAM文件为其纯文本格式,CRAM为BAM的高压缩格式,IO效率相比于BAM略差,但是占用存储空间更小。 1. BAM文件的比对信息 BAM的核心信…

用c语言实现通讯录

目录 静态简易通讯录 代码: 功能模块展示: 设计思路: 动态简易通讯录(本质顺序表) 代码: 扩容模块展示: 设计思路: 文件版本通讯录 代码: 文件模块展示&#x…

SJ705C安全帽高温预处理箱

一、仪器用途 安全帽高温预处理箱是我公司根据安全帽新国家标准检测试验要求而自主设计研发制造。是安全帽检测前做高温预处理的专用设备。 二、仪器特征 1、有PID自整定温度控制仪,控制准确。 2、数显计时、计温器。 3、石英灯管加热系统;。 …

Android 调试桥_ADB命令

Android 调试桥 ADB全称 【Android Debug Bridge】 是Android SDK中的一个命令行工具,adb命令可以直接操作管理Android模拟器或真实的Android设备(手机) ADB的工作原理 启动一个 adb 客户端时,此客户端首先检查是否有已运行的 …

python zip()函数(将多个可迭代对象的元素配对,创建一个元组的迭代器)zip_longest()

文章目录 Python zip() 函数深入解析基本用法函数原型基础示例 处理不同长度的迭代器高级用法多个迭代器使用 zip() 与 dict()解压序列 注意事项内存效率:zip() 返回的是一个迭代器,这意味着直到迭代发生前,元素不会被消耗。这使得 zip() 特别…

自然语言处理基础知识入门(六) GPT模型详解

GPT 前言一、GPT模型1.1 为什么采用Decoder模块?1.2 为什么不使用Encoder模块? 二、 模型训练2.1 预训练阶段2.2 半监督微调 总结 前言 在之前的章节中,深入探究了预训练ELMo模型的架构与实现原理。通过采用双向LSTM架构在大规模文本数据上进…

[数据集][目标检测][数据集][目标检测]智能手机检测数据集VOC格式5447张

数据集格式:Pascal VOC格式(不包含分割的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):5447 标注数量(xml文件个数):5447 标注类别数:1 标注类别名称:["phone"] 每个类别标注的框数&#xff…

高德地图 JS API用于绘画船舶轨迹

文章目录 引言I 2.0升级指南1.1 修改 JSAPI 引用中的版本号到 2.01.2 相应修改II 1.4.15 文档引言 地图 JS API 2.0 是高德开放平台免费提供的第四代 Web 地图渲染引擎, 以 WebGL 为主要绘图手段,本着“更轻、更快、更易用”的服务原则,广泛采用了各种前沿技术,交互体验、…

从CSV到数据库(简易)

需求:客户上传CSV文档,要求CSV文档内容查重/插入/更新相关数据。 框架:jdbcTemplate、commons-io、 DB:oracle 相关依赖: 这里本来打算用的2.11.0,无奈正式项目那边用老版本1.3.1,新版本对类型…

iperf3带宽压测工具使用

iperf3带宽压测工具使用 安装下载地址:[下载入口](https://iperf.fr/iperf-download.php)测试结果:时长测试(压测使用):并行测试反向测试UDP 带宽测试 iPerf3 是用于主动测试 IP 网络上最大可用带宽的工具 安装 下载地址&#x…

大话C语言:第21篇 数组

1 数组概述 数组是若干个相同类型的变量在内存中有序存储的集合。 数组是 C 语言中的一种数据结构,用于存储一组具有相同数据类型的数据。 数组在内存中会开辟一块连续的空间 数组中的每个元素可以通过一个索引(下标)来访问,索…

【Python Cookbook】S1E08 在两个字典中寻找相同点

目录 问题解决方案讨论 问题 在两个字典中,如果我们想要找到其中相同的地方,比如相同的键、相同的值等。 解决方案 考虑以下两个字典以及其中内容: a {x: 1,y: 2,z: 3 }b {w: 10,x: 11,y: 2 }要找出这两个字典中的相同之处,…

Java学习19-List、set容器

目录 一.List: 1.List基本介绍: 2.List接口方法: 3.List的三种遍历方式: 4.ArrayList: (1)ArrayLis的基本介绍: (2)ArrayList底层结构和源码分析&…

考研回顾纪录--科软考研失败并调剂兰州大学软件工程专业复试经历

1.背景 本人工作一年后决定考研,遂于2023年4月底离职。5月到家后开始学习。本科东北大学软件工程专业,绩点3.2/5,按照百分制计算是82分。本科纯属混子,只有一个四级551,一个数学竞赛省二等奖,大创学校立项…

vue打包时报错文件包过大

1.问题:npm run build 之后出现 2. 翻译之后意思就是某块过大 3. 解决办法:在vite.config.ts文件上添加 build: { chunkSizeWarningLimit: 1600, }, 4.最终打包

UnityLeapMotion流程记录

突然接到一个LeapMotion的项目,回想起上次做LeapMotion还是在几年前,但是当时没有去记录,所以这次就相当于是重新走了一遍流程。很苦恼,赶紧记录下来。防止之后忘记。这次的需求还是比较简单的,用手滑动控制图片序列播…

在Visual Studio2022中同一个项目里写作业,有多个cpp文件会报错

为了省事,在同一个项目里写很多个题目,结果只有一个cpp文件时没出错,写了2个cpp文件再想运行时就出错了; 将不相关的cpp文件移出去 在源文件中对其点击右键,找到“从项目中排除”; 结果如图,剩…

深度学习21天 —— 卷积神经网络(CNN):识别验证码( 第12天)

目录 一、前期准备 1.1 标签数字化 1.2 加载数据 1.3 配置数据 二、其他 2.1 损失函数 categorical_crossentropy 2.2 plt.legend(loc ) 2.3 history.history 活动地址:CSDN21天学习挑战赛 学习:深度学习100例-卷积神经网络(CNN&…

通过 SFP 接口实现千兆光纤以太网通信2

Tri Mode Ethernet MAC IP 核结构 时钟网络 IP 核内部时钟网络结构如下图所示。其中,tx_mac_aclk 为 AXI-Stream 发送接口的同步时钟, rx_mac_aclk 为 AXI-Stream 接收接口的同步时钟。由于在设计中没有使用 MDIO 接口,所以不存在时钟信号 …