【YOLOv10训练教程】如何使用YOLOv10训练自己的数据集并且推理使用

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【车辆检测追踪与流量计数系统】
49.【行人检测追踪与双向流量计数系统】50.【基于YOLOv8深度学习的反光衣检测与预警系统】
51.【危险区域人员闯入检测与报警系统】52.【高压输电线绝缘子缺陷智能检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

引言

本文主要介绍如何使用YOLOv10训练自己的目标检测数据集并且进行模型的推理使用。本文所有代码及数据集都已打包好,供小伙伴们学习。需要的小伙伴可通过文末直接获取。

YOLOv10简介

YOLOv10 是清华大学研究人员在 UltralyticsPython 清华大学的研究人员在 YOLOv10软件包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 在显著降低计算开销的同时实现了最先进的性能。并用大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度-延迟权衡。YOLOv10与其他SOTA模型的性能对比如下:
在这里插入图片描述

亮点

  1. 无 NMS 设计:利用一致的双重分配来消除对 NMS 的需求,从而减少推理延迟。
  2. 整体模型设计:从效率和准确性的角度全面优化各种组件,包括轻量级分类头、空间通道去耦向下采样和等级引导块设计。
  3. 增强的模型功能:纳入大核卷积和部分自注意模块,在不增加大量计算成本的情况下提高性能。

模型介绍

YOLOv10 有多种型号,可满足不同的应用需求:

YOLOv10-N:用于资源极其有限环境的纳米版本。
YOLOv10-S:兼顾速度和精度的小型版本。
YOLOv10-M:通用中型版本。
YOLOv10-B:平衡型,宽度增加,精度更高。
YOLOv10-L:大型版本,精度更高,但计算资源增加。
YOLOv10-X:超大型版本可实现最高精度和性能。

YOLOv10与v8结构对比

在这里插入图片描述
从结构上看添加了PSA和在C2f结构中添加了CBI结构。结构设计如下:
在这里插入图片描述

而且去掉了NMS:
在这里插入图片描述

下载源码

源码地址:https://github.com/THU-MIG/yolov10

下载源码后解压,目录如下:
在这里插入图片描述

环境配置

使用conda 创建虚拟环境配置【输入命令前,需进入到项目目下】。命令如下:

conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .

准备数据集

将需要训练的数据集,放入项目目录下,格式如下:
在这里插入图片描述

训练模型:

注意这个地方需要导入YOLOv10模块,不是YOLO模块。
训练代码如下:

#coding:utf-8
from ultralytics import YOLOv10
# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/v10/yolov10n.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolov10n.pt'if __name__ == '__main__':#加载预训练模型model = YOLOv10(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150,batch=4,name='train_v10')

点击运行后开始训练,打印的网路结构如下:
在这里插入图片描述

模型推理

模型推理代码如下:

from ultralytics import YOLOv10# Load a pretrained YOLOv10n model
model = YOLOv10("yolov10n.pt")# Perform object detection on an image
# results = model("test1.jpg")
results = model.predict("test1.jpg")# Display the results
results[0].show()

运行后显示结果,会直接显示推理结果:

在这里插入图片描述

资料获取

关于本文的相关代码及数据集资料都已打包好,供需要的小伙伴们学习,获取方式如下:
在这里插入图片描述

关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【YOLO】即可获取下载方式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/841157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【气象常用】间断时间序列图

效果图: 主要步骤: 1. 数据准备:随机数组 2. 图像绘制:绘制间断的时间序列 详细代码:着急的直接拖到最后有完整代码 步骤一:导入库包及图片存储路径并设置中文字体为宋体,西文为新罗马&…

冷干机使用中的注意事项

冷干机使用中的注意事项 使用冷干机时,以下是几个注意事项: 安装位置:选择一个通风良好、温度适宜的位置安装冷干机。确保周围环境没有过多的灰尘、腐蚀性气体或其他污染物,以免对冷干机的正常运行和寿命产生不利影响。 电源要求…

C++ STL 函数对象:隐藏的陷阱,如何避免状态带来的麻烦?

STL 函数对象:无状态即无压力 一、简介二、函数对象三、避免在函数对象中保存状态3.1、函数对象3.2、lambda 表达式 四、选择合适的更高层次的结构五、总结 一、简介 在使用 C 标准模板库 (STL) 时,函数对象 (Function Object) 是一种强大的工具&#x…

02324 自学考试 离散数学屈婉玲教材 目录

02324 自学考试 离散数学屈婉玲教材 目录 02324 自学考试 离散数学屈婉玲教材 02324离散数学全程班历年真题资料

技术面试,项目实战,求职利器

之前找工作一直想找一个能真正系统性学开发的地方,之前毕业找工作的时候无意间碰到下面这个网站,感觉还挺不错的,用上面的技术实战内容应对技术面试,也算是求职利器了。有需要的可以自取: https://how2j.cn?p156336 实…

VMware虚拟机中ubuntu使用记录(10)—— 如何在Ubuntu18.04中使用自己的单目摄像头运行ORB_SLAM3(亲测有效,踩坑记录)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、ORB_SLAM3源码编译二、ORB_SLAM3实时单目相机测试1. 查看摄像头的话题2. 运行测试 三. 运行测试可能的报错1. 报错一(1) 问题描述(2) 原因分析(3) 解决 2. …

SWM320系列应用

一、Swm320系列 SPI 应用 现象:应用SWM320的SPI1的模式0作为从机,整体产品硬件平台同步上电,从机的SPI无法正常工作,进不了中断,手工复位一次或连接SWD调试就正常了,这样的情况应该怎么解决?其…

Windows远程连接命令?

Windows操作系统提供了多种远程连接命令,使用户可以通过网络连接到远程计算机,并在远程操作系统上执行操作。远程连接命令可方便实现远程工作、故障排查和系统维护等任务。本文将介绍几种常见的Windows远程连接命令及其基本使用方法。 远程连接命令 Win…

C语言 | Leetcode C语言题解之第112题路径总和

题目: 题解: bool hasPathSum(struct TreeNode *root, int sum) {if (root NULL) {return false;}if (root->left NULL && root->right NULL) {return sum root->val;}return hasPathSum(root->left, sum - root->val) ||ha…

从0开始带你成为Kafka消息中间件高手---第二讲

从0开始带你成为Kafka消息中间件高手—第二讲 那么在消费数据的时候,需要从磁盘文件里读取数据后通过网络发送出去,这个时候怎么提升性能呢? 首先就是利用了page cache技术,之前说过,kafka写入数据到磁盘文件的时候&…

企业微信hook接口协议,ipad协议http,根据手机号搜索联系人

根据手机号搜索联系人 参数名必选类型说明uuid是String每个实例的唯一标识,根据uuid操作具体企业微信 请求示例 {"uuid":"3240fde0-45e2-48c0-90e8-cb098d0ebe43","phoneNumber":"1357xxxx" } 返回示例 {"data&q…

隐私是建立人工智能信任的关键

微信关注公众号网络研究观获取更多。 谷歌的 Astra 是其首款人工智能代理 谷歌继续将生成式人工智能融入网络安全 云的复杂性是我们这个时代最大的安全威胁 云安全最受关注的问题:人工智能生成的代码 企业可以从人工智能中获得转型利益,但确保“隐…

CAD二次开发(4)-编辑图形

工具类:EditEntityTool.cs using Autodesk.AutoCAD.ApplicationServices; using Autodesk.AutoCAD.DatabaseServices; using Autodesk.AutoCAD.Geometry; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Th…

Leetcode | 5-22 | 每日一题 | 找出输掉零场或一场比赛的玩家

🔥博客介绍: EvLast 🎥系列专栏: 数据结构与算法 , 算法入门 , C项目 , Leetcode_DayCode 🎥 当前专栏: Leetcode_DayCode 专题 : 数据结构帮助小白快速入门算法 👍👍👍&#x1…

Go语言之Gorm框架(一) ——初窥Gorm框架

Gorm和Mysql驱动的安装 打开终端,输入下列命令即可: go get gorm.io/driver/mysql go get gorm.io/gormGorm连接数据库 示例 package mainimport ("fmt""github.com/sirupsen/logrus""gorm.io/driver/mysql""gor…

HE TB PPDU MU-RTS

看起来像是MU-RTS的触发帧的应答不是HE TB PPDU,而是传统得的帧,应答CTS。 非AP 的STA,是不能发送触发帧,也就是说,触发帧,只能是由AP发送给STA

AI视频智能分析引领智慧园区升级:EasyCVR智慧园区视频管理方案

一、系统概述与需求 随着信息技术的不断发展,智慧园区作为城市现代化的重要组成部分,对安全监控、智能化管理提出了更高的要求。智慧园区视频智能管理系统作为实现园区智能化管理的重要手段,通过对园区内各关键节点的视频监控和智能分析&…

一文了解安卓内存抖动

目录 目录一、什么是内存抖动?1.1 Android里的内存抖动1.2 如何直观查看这种现象1.3 内存抖动带来的风险 二、如何避免内存抖动 目录 一、什么是内存抖动? 在程序里,每创建一个对象,就会有一块内存分配给它,每分配一…

LabVIEW虚拟测试实验室开发

LabVIEW虚拟测试实验室开发 在当代的科技和工业进步中,测试与测量扮演着至关重要的角色。随着技术的发展,测试系统也变得日益复杂和成本昂贵,同时对测试结果的准确性和测试过程的效率要求越来越高。开发了一种基于LabVIEW的虚拟测试实验室的…