文心一言 VS 讯飞星火 VS chatgpt (265)-- 算法导论20.1 4题

四、假设不使用一棵叠加的度为 u \sqrt{u} u 的树,而是使用一棵叠加的度为 u 1 k u^{\frac{1}{k}} uk1的树,这里 k 是大于 1 的常数,则这样的一棵树的高度是多少?又每个操作将需要多长时间?如果要写代码,请用go语言。

文心一言:

在这个场景中,我们讨论的是一种特殊的树结构,其中节点的度(即子节点的数量)是 u^(1/k),u 是树中元素的总数,k 是一个大于 1 的常数。下面我们来分析这样一棵树的高度,并讨论每个操作可能需要的时间。

树的高度
对于一棵度为 d 的树,如果它有 u 个节点,其高度 h 可以通过以下公式近似计算:

[ u \approx d^h ]

这里,d = u^(1/k),所以:

[ u \approx (u{\frac{1}{k}})h ]

[ u \approx u^{\frac{h}{k}} ]

对上面的等式两边取对数:

[ \log(u) \approx \frac{h}{k} \log(u) ]

解这个方程得到树的高度 h:

[ h \approx k ]

这是一个近似的结果,它表明树的高度大致与 k 成正比。实际上,由于树的构造可能不是完美的,高度可能会有所波动,但这个近似给出了一个很好的直观理解。

操作时间
对于树中的每个操作(如查找、插入或删除),时间复杂度主要取决于树的高度,因为我们需要从根节点遍历到叶节点。在高度为 h 的树中,这样的操作通常需要 O(h) 的时间。由于 h ≈ k,所以操作的时间复杂度大致是 O(k)。

然而,需要注意的是,这里的 k 是一个常数,与树中元素的总数 u 无关。因此,尽管理论上操作的时间复杂度与 k 成正比,但在实际应用中,这个操作时间仍然是非常快的,因为 k 是一个固定的值。

Go 语言实现
由于具体实现这样一棵树会涉及较多的代码,并且会依赖于特定的应用需求(如是否需要平衡树、是否有特殊的排序需求等),因此我无法在这里提供一个完整的 Go 语言实现。但是,基本的思路是创建一个树结构,其中每个节点可以有多达 u^(1/k) 个子节点,并实现相应的查找、插入和删除操作。

如果你需要具体的代码示例或进一步的指导,请提供更多的上下文或具体需求,以便我能提供更精确的帮助。

总的来说,使用叠加的度为 u^(1/k) 的树结构,树的高度大致为 k,每个操作的时间复杂度大致为 O(k)。这种结构在处理大量数据时可能提供比传统二叉树更高的效率,但也需要更复杂的实现来管理更多的子节点。

讯飞星火:

在这个问题中,我们假设树的度为 u 1 k u^{\frac{1}{k}} uk1。这意味着每个节点有 u 1 k u^{\frac{1}{k}} uk1 个子节点。因此,树的高度将是 l o g u ( u 1 k ) log_u(u^{\frac{1}{k}}) logu(uk1)。在Go语言中,我们可以使用math库来计算这个值。

对于操作的时间复杂度,如果我们假设访问每个节点的时间是常数,那么总的时间复杂度将是O(n),其中n是树中节点的数量。这是因为我们需要访问每个节点一次来执行操作。

以下是Go语言的代码实现:

package mainimport ("fmt""math"
)func heightOfTree(u float64, k float64) float64 {return math.Log(u) / math.Log(math.Pow(u, 1/k))
}func main() {u := 10.0k := 2.0fmt.Println("Height of tree:", heightOfTree(u, k))
}

这段代码首先定义了一个函数 heightOfTree,它接受两个参数 u 和 k,然后返回树的高度。然后在 main 函数中,我们调用了这个函数并打印出结果。

360智脑:

为了找到这种情况下树的高度以及每个操作所需的时间,我们首先需要理解题目中的术语:“叠加的度”。在一般的树中,一个节点的“度”是指该节点拥有的子节点数量。而这里的“叠加的度”可能是指所有子节点的度之和。不过,由于具体的定义对结果影响很大,我们将会基于两种不同解释来探讨这个问题。

解释1:叠加的度是指所有子节点的度之和

若我们有一棵以 u 1 k u^{\frac{1}{k}} uk1为度的树,这意味着每个节点有 ( u 1 k ) (u^{\frac{1}{k}}) (uk1)个子节点。假设树T的高度为h,则树的总节点数(包括根节点)可以表示为:
N = u + ( u 1 k ) + ( u 1 k ) 2 + ⋯ + ( u 1 k ) h − 1 N = u + (u^{\frac{1}{k}}) + (u^{\frac{1}{k}})^2 + \cdots + (u^{\frac{1}{k}})^{h-1} N=u+(uk1)+(uk1)2++(uk1)h1
这是一个等比数列,其前h项和为:
S = ( u 1 k ) ( 1 − ( u 1 k ) h ) 1 − u 1 k S = \frac{(u^{\frac{1}{k}})(1 - (u^{\frac{1}{k}})^h)}{1 - u^{\frac{1}{k}}} S=1uk1(uk1)(1(uk1)h)
因为N必须是一个整数,所以我们可以调整h以满足这个条件。此时,树的高度h与操作的时间t之间可能存在某种关系,但确切的关系取决于具体实现细节。对于每个操作的时间,我们没有足够的信息来确定它,除非知道更多关于树的结构和所执行操作的信息。

解释2:叠加的度是指直接子节点的度之和

如果我们按照第二种解释,即每个节点的叠加的度为 u 1 k u^{\frac{1}{k}} uk1,那么意味着每个节点的子节点总数就是 u 1 k u^{\frac{1}{k}} uk1。这样的树实际上就变成了一个完全二叉树,因为每个节点的子节点数是固定的。

对于完全二叉树,其高度h可以通过下面的公式计算:

h = ⌊ log ⁡ u 1 k ( u ) ⌋ + 1 h = \lfloor \log_{u^{\frac{1}{k}}} (u) \rfloor + 1 h=loguk1(u)⌋+1

这是因为在一个完全二叉树中,每层都是满的,且除了最后一层之外的所有层都有正好 u 1 k u^{\frac{1}{k}} uk1个节点。因此,我们可以通过不断将总数除以 u 1 k u^{\frac{1}{k}} uk1来计算出树的高度。

每个操作的时间t取决于所进行的操作类型和树的实现方式。例如,插入、删除和查找操作在二叉搜索树中的时间复杂度通常为O(log n),其中n是树中节点的数量。对于本例中的树,由于其高度是O(log_{u^{\frac{1}{k}}} (u)),所以这些操作的时间也可以表示为O(log_{u^{\frac{1}{k}}} (u))。

至于写代码,以下是用Go语言实现的一个简单例子,用来表示这种树和计算其高度:

package mainimport "fmt"const u float64 = 100 // 假设u为100
const k int = 2       // 假设k为2func main() {var height intfor {if u <= 1 {break}u /= math.Pow(u, 1/k)height++}fmt.Printf("树的高度为: %d\n", height)
}

请注意,这里的代码使用了Go语言的标准库,并且假设了高度是整数。在实际情况中,可能需要处理浮点数以及一些边界情况。

智谱清言:

首先,我们来分析一下这样一棵叠加的度为 (u^{\frac{1}{k}}) 的树。

1.树的高度

在一棵完全二叉树中,第 (i) 个节点的子节点数量是 (2^k),其中 (k) 是树的高度((k) 也是整数)。根据题设,每个节点的度是 (u^{\frac{1}{k}})。

因此,我们有 (2^k = u^{\frac{1}{k}})。对两边取 (k) 次幂,得到 (2^k \times k = u)。

由于 (2^k \times k) 是 (u) 的一个表达式,且 (k) 是常数,(u) 是固定的,那么我们可以推出,在高度 (k) 的树上,节点的总数是 (2^k \times k)。

2.每个操作所需时间

每个操作可能指的是从根节点到叶节点的路径上的延时。在这个树结构中,假设每个节点的延时是相等的。

对于度为 (u^{\frac{1}{k}}) 的树,每个非叶子节点都有 (u^{\frac{1}{k}}) 个子节点。所以,从一个节点到它的任何一个子节点需要 1 个单位时间。

因此,对于高度为 (k) 的树,最长的路径(从根节点到叶节点)将包含 (k) 个这样的单位时间。
接下来,我将使用 Go 语言编写一个简单的函数来计算树的高度和每个操作所需的时间。

package main
import ("fmt"
)
// Function to calculate the height of the tree
func calculateTreeHeight(u int, k int) (int, int) {// Calculate the total number of nodes in the treetotalNodes := 1 << k // 2^k// Calculate the height of the treeheight := 0for totalNodes < u {height++totalNodes *= int(math.Pow(float64(u), 1.0/float64(k)))}// Calculate the time for each operationoperationTime := kreturn height, operationTime
}
func main() {u := 8 // Example value for uk := 3 // Example value for kheight, operationTime := calculateTreeHeight(u, k)fmt.Printf("Height of the tree: %d\n", height)fmt.Printf("Time for each operation: %d\n", operationTime)
}

请注意,上面的代码没有考虑所有边界条件和潜在的优化,但它应该能给你一个基本的框架来开始。这个程序首先计算树中节点的总数,直到它超过给定的 (u) 值。然后,它会计算树的高度和每个操作所需的时间。

由于我使用的是Go语言的标准库,可能需要导入 math 包来使用 Pow 函数。

天工:

首先,我们需要理解问题的背景。在计算机科学中,"叠加树"通常指的是一种特殊的树结构,其中每个节点可能有多个子节点,这种结构的目的是为了提高某些操作的效率,比如搜索或者插入。

在这个问题中,我们有一棵叠加树,每个节点的度(即子节点的数量)是 u 1 k u^{\frac{1}{k}} uk1,其中 u u u 是树的总节点数, k k k 是一个大于1的常数。

计算树的高度

树的高度是从根节点到最远叶子节点的路径长度。在一个平衡的叠加树中,我们可以通过以下公式估算高度:

h ≈ log ⁡ u 1 k u = log ⁡ u log ⁡ u 1 k = log ⁡ u 1 k log ⁡ u = k h \approx \log_{u^{\frac{1}{k}}} u = \frac{\log u}{\log u^{\frac{1}{k}}} = \frac{\log u}{\frac{1}{k} \log u} = k hloguk1u=loguk1logu=k1logulogu=k

所以,这棵树的高度大约是 k k k

计算每个操作的时间

在叠加树中,一个操作(如搜索或插入)的时间复杂度通常与树的高度成正比。因此,如果树的高度是 k k k,那么每个操作的时间复杂度大约是 O ( k ) O(k) O(k)

Go语言代码示例

由于这是一个理论问题,而不是一个具体的实现问题,所以没有具体的Go语言代码可以提供。然而,如果我们想要创建一个具有给定度数的叠加树,我们可以编写一个基本的树结构,并在插入节点时确保每个节点的度数不超过 u 1 k u^{\frac{1}{k}} uk1

下面是一个非常基础的Go语言树结构的示例,它不包含叠加树的特定逻辑,但可以作为一个起点:

package mainimport "fmt"type Node struct {Value intChildren []*Node
}type Tree struct {Root *Node
}func NewTree() *Tree {return &Tree{}
}func (t *Tree) Insert(value int) {newNode := &Node{Value: value}if t.Root == nil {t.Root = newNode} else {// 这里需要实现叠加树的逻辑,确保每个节点的度数不超过 u^(1/k)// 例如,可以使用队列来按层遍历树,找到合适的父节点插入新节点}
}func main() {tree := NewTree()tree.Insert(1)// 插入更多的节点...
}

在这个示例中,Insert 函数需要被扩展以包含叠加树的逻辑,确保每个节点的度数不超过指定的限制。这可能涉及到更复杂的算法,例如使用队列来按层遍历树,并找到合适的位置来插入新的节点。

chatgpt:

对于一棵叠加的度为 u 1 k u^{\frac{1}{k}} uk1 的树,它的高度可以通过求解以下等式得到:

u = ( u 1 k ) h u = (u^{\frac{1}{k}})^h u=(uk1)h

其中, h h h 是树的高度。将等式两边取对数,则有:

log ⁡ u = h log ⁡ ( u 1 k ) \log u = h \log(u^{\frac{1}{k}}) logu=hlog(uk1)

由于 log ⁡ ( u 1 k ) = 1 k log ⁡ u \log(u^{\frac{1}{k}}) = \frac{1}{k} \log u log(uk1)=k1logu,代入上述等式可得:

log ⁡ u = h k log ⁡ u \log u = \frac{h}{k} \log u logu=khlogu

消去 log ⁡ u \log u logu 后得到:

h = k h = k h=k

因此,这样一棵树的高度为 k k k

每个操作的时间复杂度取决于具体实现和操作类型。通常情况下,在该数据结构中查找、插入和删除元素都需要花费 O ( u ) O(\sqrt{u}) O(u ) 的时间复杂度。

以下是使用 Go 语言实现一个简单的基于叠加树的代码示例:

package mainimport ("fmt""math"
)type TreeNode struct {Value    intChildren []*TreeNode
}func NewTreeNode(value int) *TreeNode {return &TreeNode{Value:    value,Children: []*TreeNode{},}
}type OverlayTree struct {Root *TreeNode
}func NewOverlayTree() *OverlayTree {return &OverlayTree{}
}// 在指定节点下插入值为value的子节点
func (t *OverlayTree) Insert(parent *TreeNode, value int) {node := NewTreeNode(value)parent.Children = append(parent.Children, node)
}// 在指定节点下删除值为value的子节点
func (t *OverlayTree) Delete(parent *TreeNode, value int) {for i, child := range parent.Children {if child.Value == value {// 从切片中删除指定位置的子节点parent.Children = append(parent.Children[:i], parent.Children[i+1:]...)break}}
}// 查找值为value的节点
func (t *OverlayTree) Search(node *TreeNode, value int) bool {if node == nil {return false}if node.Value == value {return true}for _, child := range node.Children {if t.Search(child, value) {return true}}return false
}func main() {tree := NewOverlayTree()root := NewTreeNode(1)tree.Root = roottree.Insert(root, 2)tree.Insert(root, 3)fmt.Println(tree.Search(root, 2)) // Output: truetree.Delete(root, 2)fmt.Println(tree.Search(root, 2)) // Output: false
}

这只是一个简单的实现示例,具体的操作和功能可以根据实际需求进行扩展和优化。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

kimi:

假设我们使用一棵叠加的度为 ( u^{\frac{1}{k}} ) 的树,其中 ( u ) 是树中节点的数量,( k ) 是一个大于 1 的常数。这种树通常被称为 ( k )-ary 树(( k ) 叉树)。

树的高度

对于一棵 ( k )-ary 树,每个节点有 ( k ) 个子节点。树的高度 ( h ) 可以通过以下公式近似计算:
[ u \approx k^h ]
[ h \approx \log_k(u) ]

这意味着树的高度 ( h ) 是 ( u ) 的 ( k ) 次方根的对数。换句话说,树的高度是 ( u ) 的 ( \frac{1}{k} ) 次幂的对数。

操作时间

在一棵 ( k )-ary 树中,大多数操作(如搜索、插入和删除)的时间复杂度与树的高度 ( h ) 成正比。因此,每个操作的时间复杂度大约是 ( O(\log_k(u)) )。

Go 语言示例代码

以下是使用 Go 语言实现的 ( k )-ary 树的基本结构和操作时间复杂度的示例代码:

package mainimport ("fmt""math"
)// TreeNode 定义 k-ary 树的节点
type TreeNode struct {value intchildren []*TreeNode
}// NewTreeNode 创建一个新的 k-ary 树节点
func NewTreeNode(value int) *TreeNode {return &TreeNode{value:     value,children: make([]*TreeNode, 0, k),}
}// 假设 k 是一个大于 1 的常数
const k = 3// CalculateTreeHeight 计算 k-ary 树的高度
func CalculateTreeHeight(u int) int {return int(math.Log(float64(u)) / math.Log(float64(k)))
}// 假设的其他操作,如 Insert, Delete, Search 等,将具有时间复杂度 O(log_k(u))func main() {// 示例:计算一个包含 1000 个节点的 k-ary 树的高度u := 1000height := CalculateTreeHeight(u)fmt.Printf("The height of a %d-ary tree with %d nodes is approximately: %d\n", k, u, height)
}

在这个示例中,我们定义了 TreeNode 结构体来表示 ( k )-ary 树的节点,并提供了 NewTreeNode 函数来创建新节点。CalculateTreeHeight 函数用于计算树的高度,它使用了数学公式 ( h \approx \log_k(u) )。

请注意,这个示例仅用于演示 ( k )-ary 树的高度计算和操作时间复杂度的概念。实际的 ( k )-ary 树实现会更加复杂,并且需要考虑具体的操作逻辑和优化。

混元:

在这种情况下,我们可以使用一棵叠加的度为 u 1 k u^{\frac{1}{k}} uk1 的树来实现分治算法。首先,我们需要计算树的高度,然后根据树的高度来估计每个操作所需的时间。

假设我们有 n n n 个元素,我们可以计算树的高度 h h h 如下:

h = ⌈ log ⁡ u 1 k n ⌉ h = \lceil \log_{u^{\frac{1}{k}}} n \rceil h=loguk1n

其中 ⌈ x ⌉ \lceil x \rceil x 表示对 x x x 向上取整。

接下来,我们可以估计每个操作所需的时间。在这种情况下,每个操作的时间复杂度主要取决于树的高度。对于每个操作,我们需要遍历树的高度,因此时间复杂度为:

O ( h ) = O ( ⌈ log ⁡ u 1 k n ⌉ ) O(h) = O(\lceil \log_{u^{\frac{1}{k}}} n \rceil) O(h)=O(⌈loguk1n⌉)

现在,我们可以使用 Go 语言实现这个算法。以下是一个简单的示例:

package mainimport ("fmt""math"
)func main() {n := 1000 // 元素数量u := 2    // 基数k := 2    // 指数// 计算树的高度h := int(math.Ceil(math.Log(float64(n)) / math.Log(math.Pow(float64(u), 1.0/float64(k)))))fmt.Printf("树的高度: %d\n", h)fmt.Printf("每个操作的时间复杂度: O(%d)\n", h)
}

这个示例计算了一棵叠加的度为 u 1 k u^{\frac{1}{k}} uk1 的树的高度,并估计了每个操作所需的时间。请注意,这个示例仅用于演示目的,实际实现可能需要根据具体需求进行调整。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/839044.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模板中的右值引用(万能引用)、引用折叠与完美转发

模板中的右值引用&#xff08;万能引用&#xff09;、引用折叠与完美转发 文章目录 模板中的右值引用&#xff08;万能引用&#xff09;、引用折叠与完美转发一、万能引用与引用折叠1. 模板中的右值引用2. 自动类型推导(auto)与万能引用3. 引用折叠与万能引用4. lambda表达式捕…

数据可视化第十天(爬虫爬取某瓣星际穿越电影评论,并且用词云图找出关键词)

开头提醒 本次爬取的是用户评论&#xff0c;只供学习使用&#xff0c;不会进行数据的传播。希望大家合法利用爬虫。 获得数据 #总程序 import requests from fake_useragent import UserAgent import timefuUserAgent()headers{User-Agent:fu.random }page_listrange(0,10) …

音视频入门基础:像素格式专题(3)——FFmpeg源码解析BMP格式图片的底层实现原理

音视频入门基础&#xff1a;像素格式专题系列文章&#xff1a; 音视频入门基础&#xff1a;像素格式专题&#xff08;1&#xff09;——RGB简介 音视频入门基础&#xff1a;像素格式专题&#xff08;2&#xff09;——不通过第三方库将RGB24格式视频转换为BMP格式图片 音视频…

人工智能+量子计算:飞跃现实边界还是科技幻想?

人工智能量子计算&#xff0c;这是一种可能改变世界的伙伴关系。 在科技的前沿&#xff0c;两大革命性技术——人工智能&#xff08;AI&#xff09;和量子计算——正站在合作的十字路口。人工智能&#xff0c;以其强大的数据分析能力和模式识别&#xff0c;正在改变着我们生活…

传感器通过Profinet转Modbus网关与PLC通讯在生产线的应用

Profinet转Modbus&#xff08;XD-MDPN100/300&#xff09;网关可视作一座桥梁&#xff0c;能够实现Profinet协议与Modbus协议相互转换&#xff0c;支持Modbus RTU主站/从站&#xff0c;并且Profinet转Modbus网关设备自带网口和串口&#xff0c;既可以实现协议的转换&#xff0c…

Mac虚拟机工具 CrossOver 24.0.0 Beta3 Mac中文版

CrossOver是一款在Mac上运行Windows应用程序的软件&#xff0c;无需安装虚拟机或重启计算机&#xff0c;简化了操作过程&#xff0c;提高了工作效率&#xff0c;为用户带来便捷体验。前往Mac青桔下载&#xff0c;享受前所未有的便利和高效。摘要由作者通过智能技术生成 CrossOv…

robosuite导入自定义机器人

目录 目的&#xff1a;案例一&#xff1a;成果展示具体步骤&#xff1a;URDF文件准备xml文件生成xml修改机器人构建 目的&#xff1a; 实现其他标准/非标准机器人的构建 案例一&#xff1a; 成果展示 添加机器人JAKA ZU 7 这个模型 具体步骤&#xff1a; URDF文件准备 从…

python-docx 在word中指定位置插入图片或表格

docx库add_picture()方法不支持对图片位置的设置 1、新建一个1行3列的表格&#xff0c;在中间的一列中插入图片 from docx import Document from docx.shared import Pt from docx.oxml.shared import OxmlElement from docx.enum.text import WD_ALIGN_PARAGRAPHdef add_cen…

Nacos 进阶篇---Nacos服务端怎么维护不健康的微服务实例 ?(七)

一、引言 在 Nacos 后台管理服务列表中&#xff0c;我们可以看到微服务列表&#xff0c;其中有一栏叫“健康实例数” &#xff08;如下图&#xff09;&#xff0c;表示对应的客户端实例信息是否可用状态。 那Nacos服务端是怎么感知客户端的状态是否可用呢 &#xff1f; 本章…

基于树的存储数据结构demo

一.简介 由于之前博主尝试Java重构redis&#xff0c;在redis中的的字典数据结构底层也是采用数组实现&#xff0c;字典中存在两个hash表&#xff0c;一个是用于存储数据&#xff0c;另一个被用于rehash扩容为前者两倍。但是我注意到了在redis的数据结构中&#xff0c;并没有像…

【MySQL】库的操作和表的操作

库的操作和表的操作 一、库的操作1、创建数据库(create)2、字符集和校验规则&#xff08;1&#xff09;查看系统默认字符集以及校验规则&#xff08;2&#xff09;查看数据库支持的字符集&#xff08;3&#xff09;查看数据库支持的字符集校验规则&#xff08;4&#xff09;校验…

存储+调优:存储-IP-SAN

存储调优&#xff1a;存储-IP-SAN 数据一致性问题 硬盘&#xff08;本地&#xff0c;远程同步rsync&#xff09; 存储设备&#xff08;网络&#xff09; 网络存储 不同接口的磁盘 1.速率 2.支持连接更多设备 3.支持热拔插 存储设备什么互联 千…

ARTS Week 29

Algorithm 本周的算法题为 2413. 最小偶倍数 给你一个正整数 n &#xff0c;返回 2 和 n 的最小公倍数&#xff08;正整数&#xff09;。 示例 1&#xff1a;输入&#xff1a;n 5输出&#xff1a;10解释&#xff1a;5 和 2 的最小公倍数是 10 。 实现代码如下&#xff1a; con…

由于找不到mfc140u.dll,无法继续执行代码如何解决

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是电脑找不到mfc140u.dll文件。这个问题可能会导致程序无法正常运行或系统崩溃。为了解决这个问题&#xff0c;本文将介绍5种修复方法&#xff0c;帮助大家快速恢复电脑的正常运行。 一&#x…

如何理解kmp的套娃式算法啊?

概念 KMP算法&#xff0c;全称Knuth Morris Pratt算法 。文章大部分内容出自《数据结构与算法之美》 核心思想 假设主串是a&#xff0c;模式串是b 在模式串与主串匹配的过程中&#xff0c;当遇到不可匹配的字符的时候&#xff0c;对已经对比过的字符&#xff0c;是否能找到…

【kubernetes】多 master 高可用集群架构部署

目录 前言 一、环境部署 二、master02 节点部署 1、拷贝相关文件 2、修改配置文件 3、启动各服务并设置开机自启 4、 查看node节点状态 三、负载均衡部署 1、部署 nginx 服务 1.1 编译安装 nginx 1.2 修改 nginx 配置文件 2、部署 keepalived 服务 2.1 yum安装 ke…

通过管理系统完成商品属性维护

文章目录 1.数据库表设计1.商品属性表 2.renren-generator生成CRUD1.基本配置检查1.generator.properties2.application.yml 2.启动RenrenGeneratorApplication.java生成CRUD1.启动后访问localhost:812.生成商品属性表的crud 3.将crud代码集成到项目中1.解压&#xff0c;找到ma…

python科研数据可视化之折线图

例如 &#xff1a; 下面的配色表画出的图很好看。选择喜欢的颜色&#xff0c;找到代码中颜色部分进行修改即可。 代码部分已经有详细的注释&#xff0c;就不一一解释了。另外&#xff0c;如果想要坐标轴从设定的值开始就把下面代码中的范围xlim&#xff0c;ylim进行注释。 imp…

设计模式12——外观模式

写文章的初心主要是用来帮助自己快速的回忆这个模式该怎么用&#xff0c;主要是下面的UML图可以起到大作用&#xff0c;在你学习过一遍以后可能会遗忘&#xff0c;忘记了不要紧&#xff0c;只要看一眼UML图就能想起来了。同时也请大家多多指教。 外观模式&#xff08;Facade&a…