自然语言处理14-基于文本向量和欧氏距离相似度的文本匹配,用于找到与查询语句最相似的文本

大家好,我是微学AI,今天给大家介绍一下自然语言处理14-基于文本向量和欧氏距离相似度的文本匹配,用于找到与查询语句最相似的文本。NLP中的文本匹配是指通过计算文本之间的相似度来找到与查询语句最相似的文本。其中一种常用的方法是基于文本向量和欧氏距离相似度。将待匹配的文本和查询语句都转换为向量表示。可以使用词袋模型、tf-idf等方法将文本转换为向量。词袋模型将文本表示为每个词汇在文本中的出现次数,tf-idf则考虑了词汇在整个语料库中的重要性。 计算文本向量之间的欧氏距离。欧氏距离是一种常用的衡量向量相似度的方法,它表示两个向量之间的几何距离。 选择与查询语句具有最小欧氏距离的文本作为匹配结果。距离越小,表示两个文本越相似。

项目背景

基于文本向量和欧氏距离相似度进行文本匹配。通过将文本表示为向量,可以计算两个文本之间的欧氏距离相似度来衡量它们的语义相似程度。这种相似度匹配方法可以应用于各种文本相关的任务,如信息检索、句子匹配、推荐系统等。

该项目解决了文本匹配中的一个痛点,即如何找到与查询语句最相似的文本。在大规模的文本数据中,快速准确地找到与用户输入查询语句相关的文本对于提供高效的信息检索和推荐非常重要。传统的基于关键词匹配的方法往往无法处理语义相似度,而基于文本向量和欧氏距离相似度的方法可以更好地捕捉文本之间的语义关系,提高匹配的准确性。

通过该项目,可以实现快速地搜索和匹配与查询语句最相关的文本,从而提供更准确的搜索结果和个性化推荐,大大提高用户体验。同时,该方法还可以应用于其他领域,如自然语言处理、文本挖掘等,有着广泛的应用前景。

数学原理

基于文本向量和欧式距离相似度的文本相似度匹配是通过计算文本之间的向量表示之间的欧式距离来确定它们的相似程度。下面是相关的数学原理:

  1. 文本向量表示:将文本转化为向量表示通常使用词袋模型(Bag-of-Words)或者词嵌入(Word Embedding)、TF-IDF技术。在词袋模型中,文本被表示为一个向量,其中每个维度对应于一个单词或特征。词嵌入则通过将每个单词映射到一个低维连续向量空间中的向量来表示文本。

  2. 欧式距离:欧式距离是用来衡量两个向量直接的距离。对于两个向量x和y,其欧式距离可以通过以下公式计算:

    d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x, y) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2} d(x,y)=i=1n(xiyi)2

    其中, n n n是向量的维度, x i x_i xi y i y_i yi 分别表示向量 x x x y y y 在第 i i i个维度上的取值。

  3. 相似度计算:根据欧式距离,我们可以计算文本之间的相似度得分。相似度计算方法通常是将欧式距离映射到一个相似度范围内,例如使用归一化公式:

    s i m i l a r i t y = 1 1 + d similarity = \frac{1}{1 + d} similarity=1+d1

    其中, d d d是欧式距离。

通过计算查询语句与其他文本之间的欧式距离,并根据相似度计算公式计算相似度得分,可以找到与查询语句最相似的文本。相似度得分越高,表示两个文本越相似。
在这里插入图片描述

实现步骤:

1.将样例数据存储在documents列表中,每个元素代表一个文本。

2.使用分词工具jieba对文本进行分词处理,生成分词后的文本列表documents_tokenized。

3.构建词汇表,使用TfidfVectorizer类来计算TF-IDF矩阵。TF-IDF是一种文本特征表示方法,它考虑了词频和逆文档频率,可以反映出词在文本中的重要程度。

4.将TF-IDF矩阵转换为DataFrame,其中行代表每个文本,列代表每个词汇。

5.定义查询语句并将其分词处理得到查询向量。

6.计算查询向量与库中各文本向量的余弦相似度,得到一个相似度矩阵。

7.找到相似度矩阵中相似度最高的文本索引,即为与查询语句最相似的文本。

8.最后,输出查询语句和最相似文本。

实现代码

现在用最清晰的代码实现文本相似度查找的功能:

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import jieba# 样例数据
documents = ['北京的天气挺好','我要去北京玩','我来自中国',"北京是比较好玩的地方","北京有故宫这个景点","这个假期去福州玩,感觉不错",'上海的天气很热','我打算去上海旅游','上海是一个现代化城市','上海有很多高楼大厦','上海的夜景非常美丽','这个周末我要去上海参加活动','广州的气温很高','我喜欢广州的美食','广州是一个繁华的城市','广州有很多著名的旅游景点']# 分词处理
tokenizer = lambda x: jieba.cut(x)# 将文本进行分解
documents_tokenized = [" ".join(tokenizer(doc)) for doc in documents]# 构建词汇表
vectorizer = TfidfVectorizer()
vectorizer.fit(documents_tokenized)
vocabulary = vectorizer.get_feature_names()# 计算TF-IDF矩阵
tfidf_matrix = vectorizer.transform(documents_tokenized)# 存储文本向量
df = pd.DataFrame(tfidf_matrix.toarray(), columns=vocabulary)if __name__ == "__main__":# 查询相似度query = "你知道假期去福州,有什么景点推荐的"query_tokenized = " ".join(tokenizer(query))query_vector = vectorizer.transform([query_tokenized])# 计算查询向量与库中向量的相似度similarity_scores = cosine_similarity(query_vector, tfidf_matrix)print(similarity_scores)# 找到相似度最高的文本most_similar_index = similarity_scores.argmax()most_similar_text = documents[most_similar_index]print("查询语句:", query)print("最相似文本:", most_similar_text)

运行结果:

[[0.        0.        0.        0.        0.3319871 0.5341931]]
查询语句: 你知道假期去福州,有什么景点推荐的
最相似文本: 这个假期去福州玩,感觉不错

总结

本文介绍了一种基于文本向量和欧氏距离相似度的文本匹配方法,用于找到与查询语句最相似的文本。首先,通过将文本和查询语句转换为向量表示,使用词袋模型或tf-idf等方法进行向量化。然后,计算文本向量之间的欧氏距离,衡量它们之间的相似度。最后,选择具有最小欧氏距离的文本作为匹配结果。该方法强调了文本的语义信息,但忽略了上下文信息。在实际应用中,可以结合其他技术和算法以提高准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/8380.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AcrelEMS企业微电网能效管理平台实现用户侧智能配电和智能用电管理-安科瑞黄安南

摘要:随着科技的发展,电力系统正逐步向智能化、数字化、互联网化迈进。智能配电与智能用电是电力产业发展的重要方向,将为传统电力系统带来革命性的变革。本文将对智能配电和智能用电的概念、特点、关键技术及应用进行详细介绍。 1、智能配电…

数据结构初阶--带头双向循环链表

目录 一.带头双向循环链表的定义 二.带头双向循环链表的功能实现 2.1.带头双向循环链表的定义 2.2.带头双向循环链表的结点创建 2.3.带头双向循环链表的初始化 2.4.带头双向循环链表的打印 2.5.带头双向循环链表的判空 2.6.带头双向循环链表的尾插 2.7.带头双向循环链…

白皮书|数字孪生工厂:成就智能制造的未来

前言 目前我国已经进入“技术应用”的数字孪生双驱动时代,在市场需求和国家政策的推动下,各地因地制宜发展数字孪生技术,深入开展数字孪生应用建设。今天我们就重点来聊一聊数字孪生技术在工厂中的应用,希望通过本次案例的深度剖析…

深“扒”云原生高性能分布式文件系统JuiceFS

JuiceFS 是一款面向云原生设计的高性能分布式文件系统,在 Apache 2.0 开源协议下发布。提供完备的 POSIX 兼容性,可将几乎所有对象存储接入本地作为海量本地磁盘使用,亦可同时在跨平台、跨地区的不同主机上挂载读写。 JuiceFS 简介 JuiceFS…

推荐几款不错的AI绘画工具

随着近年来数据、算法等核心技术的不断进步,人工智能在内容创作各垂直领域的比例不断增加,包括人工智能写作、人工智能编辑和最近流行的人工智能绘画。 许多朋友也想跟上潮流,使用人工智能绘画生成软件创建人工智能图像,但我不知…

手机变局2023:一场瞄准产品和技术的“思维革命”

以折叠屏冲高端,已成为中国手机厂商们的共识。 在这个苹果未涉足的领域,国产手机厂商们加快脚步迭代推新,积极抢占机遇。但平心而论,虽然国产折叠屏机型众多,但市场上始终缺乏一款突破性的产品作为标杆,为…

数据结构【树】

第五章 树 一、树 1.定义:n个结点的集合,n0为空树;是递归的,是一种逻辑结构,同时也是一种分层结构; 特点 树的根结点没有前驱结点,除了根结点外的所有结点有且只有一个前驱结点;树…

Clion开发STM32之W5500系列(综合实验)

说明 此为w5500模块的综合实验测试模块,包含dhcp、dns、ntp以上三个模块的驱动参考之前的文章,本篇不做说明.使用的开发芯片 stm32f103vet6系列,外设接口使用的spi2 实验内容: 通过dhcp动态获取ip,通过dns解析NTP服务域名的ip通过NTP服务ip获取时间 w5500配置驱…

学生护眼台灯几瓦最舒适?2023全新五款护眼台灯推荐

每次经过学校,发现戴眼镜的小学生真的不少,通过近几年的儿童以及青少年的近视人数可看出,我国的近视人数中,儿童以及青少年占比53.5%,所以许多家长逐渐重视孩子用眼健康问题,会选择护眼台灯用于孩子写作业和…

第1章 获取数据库中的数据

CoreShop源程序是以数据库优先进行定义的,所以其本身不包含代码优先的定义,但本从更习惯于代码优先,所以为其定义了代码优先的定义。 1 CoreCms.Net.Model.Entities.SysRole using SqlSugar; using System.ComponentModel.DataAnnotations…

【JavaEE初阶】Tomcat安装与使用及初识Servlet

文章目录 1. Tomcat的安装与使用1.1 Tomcat安装1.2 Tomcat的启动1.3 Tomcat部署前端页面 2. Servlet2.1 Servlet是什么2.2 第一个Servlet程序2.3 常见错误 1. Tomcat的安装与使用 1.1 Tomcat安装 在浏览器中搜索Tomcat,打开官方网页.Tomcat官网 点击下载Tomcat8. 点击下载压…

PSP - 使用 MMseqs2 工具快速搜索蛋白质序列数据库 (GMGC)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/131934642 MMseq2 是非常强大和高效的生物信息学软件,可以在极短的时间内对大规模的核苷酸和蛋白质序列进行搜索和聚类。主要特点有&a…

fpga_pwm呼吸灯(EP4CE6F17C8)

文章目录 一、呼吸灯二、代码实现三、引脚分配 一、呼吸灯 呼吸灯是指灯光在微电脑的控制之下完成由亮到暗的逐渐变化,使用开发板上的四个led灯实现1s间隔的呼吸灯。 二、代码实现 c module pwm_led( input clk ,input rst_n ,output reg [3:0] led ); …

c++网络编程:Boost.asio源码剖析

1、前言 Boost库是一个可移植、提供源代码的C库,作为标准库的后备,是C标准化进程的开发引擎之一。Boost库由C标准委员会库工作组成员发起,其中有些内容有望成为下一代C标准库内容。在C社区中影响甚大,是不折不扣的“准”标准库。…

未来行星探索希望:新型多脚机器人-团队版

机器人正在探索一个模拟的外星环境 即使一个机器人失败了,其余的团队成员也可以抵消它的损失。 背景 虽然探测器取得了令人难以置信的发现,但它们的轮子可能会拖慢它们的速度,而不稳定的地形可能会导致损坏。虽然没有东西可以取代“毅力号”…

Vue3输入框(Input)

APIs 参数说明类型默认值必传width输入框宽度string | number‘100%’falseaddonBefore设置前置标签string | slot‘’falseaddonAfter设置后置标签string | slot‘’falseallowClear可以点击清除图标删除内容booleanfalsefalsepassword是否启用密码框booleanfalsefalsedisabl…

两个小封装电机驱动芯片:MLX813XX、A4950

一.MLX813XX MELEXIS的微型电机驱动MLX813XX系列芯片集成MCU、预驱动以及功率模块等能够满足10W以下的电机驱动。 相对于普通分离器件的解决方案,MLX813XX系列电机驱动芯片是一款高集成度的驱动控制芯片,可以满足汽车系统高品质和低成本的要…

Spring Boot实践一

一、Spring Boot简介 Spring Boot是一个基于Spring框架的快速开发应用程序的工具。它提供了一种快速、方便的方式来创建基于Spring的应用程序,而无需繁琐的配置。Spring Boot通过自动配置和约定大于配置的方式,使得开发者可以更加专注于业务逻辑的实现&…

【CEEMDAN-WOA-LSTM】完备集合经验模态分解-鲸鱼优化-长短时记忆神经网络研究(Python代码实现)

目录 💥1 概述 1.1 完备集合经验模态分解原理 1.2 鲸鱼优化 1.3 LSTM 📚2 运行结果 🎉3 参考文献 🌈4 Python代码实现 💥1 概述 1.1 完备集合经验模态分解原理 早期的 EMD 方法具有较强的自适应性,能够有…

【node.js】03-http模块

目录 一、什么是http模块 二、创建基本的WEB服务器 三、req请求对象 四、res响应对象 五、根据不同的url响应不同的JSON内容 一、什么是http模块 http 模块是 Node.js 官方提供的、用来创建 web 服务器的模块。通过 http 模块提供的 http.createServer() 方法,…