吴恩达 深度学习 神经网络 softmax adam 交叉验证

神经网络中的层:输入层(layer 0)、隐藏层、卷积层(看情况用这个)、输出层。(参考文章)
在这里插入图片描述

激活函数
隐藏层一般用relu函数;
输出层根据需要,二分类用sigmoid,多分类用softmax…在这里插入图片描述前向传播算法:参考文章
前向传播python实现
反向传播算法:参考文章
用Tensorflow搭建一个神经网络:参考文章

多分类问题

  1. softmax回归算法
    左二分类;右多分类 上图中 左二分类;右多分类

算法公式:在这里插入图片描述
2. Softmax回归算法的损失函数在这里插入图片描述
在这里插入图片描述

Adam算法

参考文章

  • 在梯度下降中,学习率α控制着每一步的大小,如果α太小,可能会导致每一步走的太小,从而使梯度下降执行的太慢;相反,如果α太大,可能会导致每一步走的太大,从而使梯度下降来回振荡。
    在这里插入图片描述
  • Adam算法可以自动调整α的大小,来保证可以用最短、最平滑的路径到达成本函数的最小值,通常它比梯度下降算法的速度要更快。
    在这里插入图片描述
  • 在w、b参数每次改变都朝着大致相同的方向移动时,adam算法会加大学习率α
  • 在w、b参数每次改变都不断来回振荡时,adam算法会减小学习率α

交叉验证集

在这里插入图片描述
在这里插入图片描述
首先用训练集训练模型,之后用验证集选出最小的J,即相对最好的模型。
超参数d与 J t r a i n J_{train} Jtrain J c v J_{cv} Jcv的关系:(即随着数据的增多, J t r a i n J_{train} Jtrain J c v J_{cv} Jcv的图)
在这里插入图片描述
λ如何影响 J t r a i n J_{train} Jtrain J c v J_{cv} Jcv:
通过最小 J c v J_{cv} Jcv,可以帮助选择一个合适的λ、d,从而帮助选择合适的模型
补充:下图中的式子为L2正则化(L1和L2正则化的区别)
在这里插入图片描述

如何选择一个合适的λ:
从0开始,一次次的增大,找出最小的J。
在这里插入图片描述

学习曲线

通过画学习曲线这种可视化方式,来观察 J c v J_{cv} Jcv J t r a i n J_{train} Jtrain,并判断模型是否有高方差和高偏差。通过高方差、高偏差来改善模型算法。
(貌似一般不咋用,了解即可)参考文章

数据添加

  1. 加新数据
  2. 数据增强:通过旋转、缩小、方法、增加对比度、镜像变换等改变已有的训练样本,来获得一个全新的训练样本
    在这里插入图片描述3. 数据合成:使用电脑上的字体,通过不同的对比度,颜色,字体进行截图得到。
    在这里插入图片描述

迁移学习

参考文章1
参考文章2
在这里插入图片描述
举例:你要训练狗的图片,但你先用猫的图片进行训练模型,训练好的模型再用狗的进行训练微调模型。这就是迁移学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/836558.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ExcelVBA在选择区域(有合并)中删除清除空行

【问题】 关于删除空行,以前是用函数来完成工作的, 今天有人提出问题,传来这个文件, 现有数据,1w多行,其中有部分列有不同合并单元格,跨行也不一样。如果要进行筛选删除空行,有一定的…

matlab使用教程(70)—修改坐标区属性

1.控制坐标轴长度比率和数据单位长度 您可以控制 x 轴、y 轴和 z 轴的相对长度(图框纵横比),也可以控制一个数据单位沿每个轴的相对长度(数据纵横比)。 1.1图框纵横比 图框纵横比是 x 轴、y 轴和 z 轴的相对长度。默认…

Python-VBA函数之旅-sum函数

目录 一、sum函数的常见应用场景 二、sum函数使用注意事项 三、如何用好sum函数? 1、sum函数: 1-1、Python: 1-2、VBA: 2、推荐阅读: 个人主页: https://myelsa1024.blog.csdn.net/ 一、sum函数的常…

CSS:盒子模型

目录 ▐ box—model概述 ▐ 盒子的组成 ▐ 内容区 ▐ 内边距 ▐ 边框 ▐ 外边距 ▐ 清除浏览器默认样式 ▐ box—model概述 • CSS处理网页时,它认为每个标签都包含在一个不可见的盒子里. • 如果把所有的标签都想象成盒子,那么我们对网…

远程桌面如何连接?

远程桌面连接是一种可以在不同地点之间共享电脑桌面的技术。通过远程桌面连接,用户可以在远程的计算机上操作另一台计算机,就像是直接坐在前者的前面一样。这种技术可以帮助用户解决在不同地点之间共享数据、协同办公、设备管理等问题。 【天联】的使用场…

浅谈@Controller注解和其他四大注解的区别

各位大佬光临寒舍,希望各位能赏脸给个三连,谢谢各位大佬了!!! 目录 1.Spring五大注解的使用约定 2.Controller注解的特别之处 3.总结 1.Spring五大注解的使用约定 Spring的五大注解(Controller&#x…

14.CAS原理

文章目录 CAS原理1.什么是CAS2.Unsafe类中的CAS方法2.1.获取UnSafe实例2.2.调用UnSafe提供的CAS方法2.3.调用Unsafe提供的偏移量相关2.4.CAS无锁编程2.4.1.使用cas进行无锁安全自增案例 CAS原理 由于JVM的synchronized重量级锁设计操作系统内核态下的互斥锁的使用,其…

二分判定+选插冒排序+归并快速堆希尔+计数排序

二分力扣题 一&#xff1a;搜索二维矩阵 74. 搜索二维矩阵 按照题意&#xff1a;直接利用二维数组转换成一维数组进行求解 方法一&#xff1a;普通等于的二分查找 class Solution { public:bool searchMatrix(vector<vector<int>>& matrix, int target) {t…

io_uring的使用示例及其解释

io_uring的使用示例及其解释 1 io_uring机制1.1 io_uring机制1.2 io_uring系统调用接口功能介绍1.2.1 io_uring_setup()&#xff1a;1.2.2 io_uring_enter()&#xff1a;1.2.3 io_uring_register()&#xff1a; 2 liburing2.1 liburing简介2.2 liburing编译2.2.1 liburing的代码…

基础ArkTS组件:导航栏组件(HarmonyOS学习第三课【3.8】)

Navigation 官方文献 Navigation 组件一般作为页面布局的根容器&#xff0c;它提供了一系列属性方法来设置页面的标题栏、工具栏以及菜单栏的各种展示样式。 Navigation 除了提供了默认的展示样式属性外&#xff0c;它还提供了 CustomBuilder 模式来自定义展示样式 说明 该…

OCR技术在历史文献数字化中的革命性作用

随着数字化技术的不断发展&#xff0c;历史文献的数字化已成为保存和传播文化遗产的重要途径。其中&#xff0c;光学字符识别&#xff08;OCR&#xff09;技术在历史文献数字化中发挥了革命性的作用&#xff0c;为研究者提供了更广阔的研究空间&#xff0c;推动了历史学研究的发…

kafka安装及收发消息

kafka需要与zookeeper配合使用&#xff0c;但是从2.8版本kafka引入kraft&#xff0c;也就是说在2.8后&#xff0c;zookeeper和kraft都可以管理kafka集群&#xff0c;这里我们依然采用zookeeper来配合kafka。 1、首先我们下载zookeeper 下载地址为 https://zookeeper.apache.org…

三. TensorRT基础入门-剖析ONNX架构并理解ProtoBuf

目录 前言0. 简述1. 执行一下我们的python程序2. ONNX是什么&#xff1f;3. onnx中的各类Proto3.1 理解onnx中的ValueInfoProto3.2 理解onnx中的TensorProto3.3 理解onnx中的NodeProto3.4 理解onnx中的AttributeProto3.5 理解onnx中的GraphProto3.6 理解onnx中的ModelProto 4. …

算法提高之单词接龙

算法提高之单词接龙 核心思想&#xff1a;dfs 预处理每两个字符串之间最短的公共部分长度 求最短公共 最终字符串是最长 dfs所有开头字符串 #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N 25;int g[N][N…

Feign 和 OpenFeign 的区别

Feign 和 OpenFeign 都是用来进行服务间调用的客户端库&#xff0c;它们旨在简化HTTP API客户端的编写过程&#xff0c;使得编写对外部服务的接口就像调用本地方法一样简单。尽管它们有相似之处&#xff0c;但也存在一些关键差异&#xff1a; 归属和演进&#xff1a; Feign 最初…

大规模 RGB LED灯控系统 Lumos:创新与智能化的融合

灯控系统&#xff1a;创新与智能化的融合 在现代照明技术不断进步的背景下&#xff0c;灯控系统的应用已经从简单的开关控制&#xff0c;发展到能够进行复杂程控操作的智能化管理。我们推出的新一代灯控解决方案&#xff0c;凭借其高度的可配置性和跨平台兼容性&#xff0c;已…

虚拟化数据恢复—误还原虚拟机快照怎么办?怎么恢复最新虚拟机数据?

虚拟化技术原理是将硬件虚拟化给不同的虚拟机使用&#xff0c;利用虚拟化技术可以在一台物理机上安装多台虚拟机。误操作或者物理机器出现故障都会导致虚拟机不可用&#xff0c;虚拟机中的数据丢失。 虚拟化数据恢复环境&#xff1a; 有一台虚拟机是由物理机迁移到ESXI上面的&a…

pikachu靶场(xss通关教程)

&#xff08;注&#xff1a;若复制注入代码攻击无效&#xff0c;请手动输入注入语句&#xff0c;在英文输入法下&#xff09; 反射型xss(get型) 1.打开网站 发现有个框&#xff0c;然后我们在框中输入一个“1”进行测试&#xff0c; 可以看到提交的数据在url处有显示&#xf…

Debian Linux 下给Nginx 1.26.0 编译增加Brotli算法支持

明月发现参考【给Nginx添加谷歌Brotli压缩算法支持】一文给出的方法&#xff0c;在Debian Linux 12.5下就一直编译失败&#xff0c;主要的错误是因为文件缺失&#xff0c;在专门又安装了apt-get install libbrotli-dev的依赖库后依然会因为文件缺失无法编译完成&#xff0c;就这…

ERP与MES与WMS集成

WMS储位管理 WMS与MES集成 (一) 打通追溯链 在拣货时&#xff0c;将配料标签与供应商的物料标签进行关联。通过配料标签达到精确追溯及防错目的。针对模糊查询&#xff0c;将工单与物料的供应商信息、仓库流转信息进行关联。 (二) WMS入库 成品(半成品)下线后&#xff0c;M…