Sarcasm detection论文解析 |基于情感背景和个人表达习惯的有效讽刺检测方法

论文地址

论文地址:https://link.springer.com/article/10.1007/s12559-021-09832-x#/

论文首页

笔记框架

 

基于情感背景和个人表达习惯的有效讽刺检测方法


📅出版年份:2022
📖出版期刊:Cognitive Computation
📈影响因子:5.4
🧑文章作者:Du Yu,Li Tong,Pathan Muhammad Salman,Teklehaimanot Hailay Kidu,Yang Zhen
📍 期刊分区:
JCR分区: Q1 中科院分区升级版: 计算机科学3区 中科院分区基础版: 工程技术2区 影响因子: 5.4 5年影响因子: 4.8 EI: 是 南农高质量: A


🔎 摘要:

讽刺在社交媒体中很常见,人们用它来间接表达自己情绪更强烈的观点。虽然它属于情感分析的一个分支,但传统的情感分析方法无法识别反讽修辞,因为它需要大量的背景知识。现有的讽刺检测方法主要集中于使用各种自然语言处理技术来分析讽刺的文本内容。本文认为,检测讽刺的本质问题是联系其上下文,包括回复目标文本的文本情绪和用户的表达习惯。提出了一种双通道卷积神经网络,不仅可以分析目标文本的语义,还可以分析其情感背景。此外,SenticNet还用于为长短期记忆(LSTM)模型添加常识。然后应用注意力机制来考虑用户的表达习惯。在多个公共数据集上进行了一系列实验,结果表明所提出的方法可以显着提高讽刺检测任务的性能。


🌐 研究目的:

提高讽刺检测任务的性能

研究问题:

通过添加模型注意力机制提取的用户表达习惯,是否可以提高讽刺文本的预测性能?

语义、情感和用户维度的结合能否提高讽刺文本的预测性能?

所提出的方法比现有的先进模型更好吗?

📰 研究背景:

现有的讽刺检测方法主要集中于使用各种自然语言处理技术来分析讽刺的文本内容。本文认为,检测讽刺的本质问题是检查其上下文,包括回复目标文本的文本情绪和用户的表达习惯。

🔬 研究方法:

本文遵循的研究方法主要分为三个部分,如图2所示。

情感上下文不协调特征嵌入

其中上下文情感信息被添加到词嵌入方法中,并使用CNN来分别提取评论的语义和情感特征。

用户表达习惯特征

其中使用Bi-LSTM对语义词向量进行编码,然后结合用户的注意力机制构建表达习惯的特征向量。

集成了多维信息

即语义、情感上下文和用户习惯


🔩 模型架构:

情感上下文不协调特征嵌入模型

输入层

SARC 数据集的注释用作 SCIFE 模型训练的输入序列。

线性层1

输入层输出序列词e(w1),e(w2)...e(wn),线性层1在串联后进行线性变换。

滑动窗口大小3是经过多次实验选择的合适参数。

hTanh层

为了使模型获得非线性特征,模型选择硬版本的双曲正切作为非线性函数。

线性层2

使用线性变换方法结合提取的情感特征并计算输入序列的情感分数。

softmax层

softmax 层用于标准化所有情感分数。

优化和学习

练目标是最小化训练数据中的交叉熵损失。

CNN架构

经过预处理后,通过Glove和SCIFE模型得到单词的向量表示。

双通道 CNN 模型考虑了两个独立的向量表示,即语义通道和情感通道。

窗口大小3是经过多次实验选择的合适参数。

利用卷积运算分别得到评论的语义隐藏序列表示hri和评论的情感不一致隐藏序列表示hci。

使用最大池化方法来保留显着特征,同时减少输出的维度。

用户表达习惯特征工程

将常识向量 μt 添加到 LSTM 每个时间节点的输入门、遗忘门和输出门。

当前的研究中使用了注意力机制,为句子中的不同单词分配不同的权重,并提取对特定用户的表达重要的单词。

最后,将信息聚合成句子的特征向量。

这里根据任务选择前馈神经网络作为评分函数的参数化方法。

讽刺分类

该模型使用非线性ReLU投影层来学习这三个特征向量的联合表示。

softmax 层用于标准化所有预测标签。

所提出的神经网络模型经过端到端训练,以优化标准二元交叉熵损失函数。


🧪 实验:

 📇  数据集:

Twitter、Reddit

验证上下文的情感不协调作为讽刺特征在不同主题上是普遍存在的。

 📏 评估指标:

 📉  优化器&超参数:

 💻  实验设备:

所有实验均使用 TensorFlow 实施。

 📊  消融实验:

图6、图7

 📋  实验结果:

在不同的数据集上,使用Bi-LSTM和attention结合获得的F1-score均高于LSTM模型获得的F1-score。

由此可见,一条评论是否讽刺,与发表该评论的作者有很大关系。

三种特征相结合的模型具有最好的性能。多维特征的组合可以挖掘文本的复杂特征,更有利于判断文本是否含有反讽成分。


🚩 研究结论:

本文提出了一种结合语义、情感和多维用户信息的讽刺检测框架。首先,使用 CNN 提取评论的语义特征。然后,将影响上下文的不一致信息添加到词嵌入模型中。将得到的词向量作为CNN的输入,获取评论的情感特征。随后,利用Bi-LSTM结合常识情感和注意力,提取评论中特定用户的表达特征。最后,通过神经网络对三个维度的信息进行拼接和训练。在多个标准数据集上对所提出的模型进行了评估,结果表明,与其他先进方法相比,所提出的模型取得了显着的改进。


📝 总结

💡 创新点:

本文提出了一种采用双通道结构设计的神经网络模型,将情感背景和个人表达习惯结合到讽刺检测中。对于讽刺这样的细粒度情绪,添加常识可以提高模型的预测能力。

基于卷积神经网络(CNN)的情感上下文不一致特征嵌入方法,可以综合提取目标上下文的语义和情感特征。

基于双向LSTM(Bi-LSTM)方法的模型,结合常识和注意力机制,全面表征用户表达习惯的特征。

 ⚠ 局限性:

 🔧 改进方法:

 🖍️ 知识补充:

SenticNet 和 AffectiveSpace 是将常识纳入长短期记忆 (LSTM) 模型的依据。

之前使用基于深度学习的模型来检测讽刺的研究中使用了两种方法,其中包括分析对话上下文以及分析用户的评论和心理状态。

自然语言工具包(NLTK)是一种自然语言情感分析工具,用于分别预测r和c的情感极性。

HTanh它的优点是计算成本略低(与双曲正切相比),而泛化保持不变[31]。

与Word2vec[33]相比,Glove具有更快的训练速度和良好的性能。

卷积运算通常用于合成 n-gram 信息[34]。

LSTM[14]由于其在序列建模方面的优异性能而被广泛应用于文本挖掘。为了解决长期依赖问题,LSTM 架构引入了一个可以长时间保存单元状态的存储单元。

[38]中使用的哨兵向量,允许模型灵活地决定是否关注这一常识。

根据阿米尔的研究[3],不同用户表达的同一句话可能具有不同的讽刺意义。


💬 讨论:

所提出的方法对于不同的 SARC 主题数据集表现出不同的分类性能。对于政治主题,性能提升较小,而对于电影和技术主题数据集,性能提升明显。究其原因,在于不同的题材具有不同的讽刺特征。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/832636.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【python】基础语法

目录 一.注释和常见规则 二.变量及类型 1.数据类型 2.Numbers数字数据类型 3. 字符串类型 (1)字符串访问 (2)字符串拼接 4.List(列表)类型 (1) 定义 (2&#…

【Linux】yum

🎉博主首页: 有趣的中国人 🎉专栏首页: Linux 🎉其它专栏: C初阶 | C进阶 | 初阶数据结构 觉得本片文章写的还不错的可以👍点赞👍、🌟收藏🌟、📝…

Golang | Leetcode Golang题解之第71题简化路径

题目: 题解: func simplifyPath(path string) string {stack : []string{}for _, name : range strings.Split(path, "/") {if name ".." {if len(stack) > 0 {stack stack[:len(stack)-1]}} else if name ! "" &am…

在uniapp里面使用 mp-html 并且开启 latex 功能

在uniapp里面使用 mp-html 并且开启 latex 功能 默认情况下 mp-html 是不会开启 latex 功能的, 如果需要开启 latex 功能是需要到代码操作拉取代码自行打包的。 这里说一下 mp-html 里面的 latex 功能是由 https://github.com/rojer95/katex-mini 提供的技术实现,…

计算机系列之数据库技术

13、数据库技术(重点、考点) 1、三级模式-两级映像(考点) 内模式:管理如何存储物理的数据,对应具体物理存储文件。 **模式:**又称为概念模式,就是我们通常使用的基本表&#xff0c…

每日算法-java

题目来自蓝桥云 // 这是一个Java程序,用于解决最长不下降子序列问题。 // 问题描述:给定一个整数序列,找到最长的子序列,使得这个子序列是不下降的(即相邻的元素不严格递减)。 // 程序使用了动态规划的方法…

【C语言】整数,浮点数数据在内存中的存储

Tiny Spark get dazzling some day. 目录 1. 整数在内存中的存储1.1 原码、反码、补码1.1 大小端存储1.2.1 字节序分类1.2.2 判断字节序 2. 浮点数在内存中的存储2.1 浮点数的存储形式2.2 浮点数的 “ 存 ”2.2.1 S2.2.2 E2.2.3 F 2.3 浮点数的 “ 取 ”2.3.1 S2.3.2 E、F 3. 浮…

读取打包到JAR中的文件:常见问题与解决方案(文件在但是报错not find)

读取打包到JAR中的文件:常见问题与解决方案 喝淡酒的时候,宜读李清照;喝甜酒时,宜读柳永;喝烈酒则大歌东坡词。其他如辛弃疾,应饮高梁小口;读放翁,应大口喝大曲;读李后主…

学习c#第26天 面向对象基础之类与对象

1.类 1.什么是类? 俗话说,“物以类聚,人以群分”。意思是同类的东西经常聚在一起,志同道合 的人相聚成群。前者说物,后者说人。这里以物来进行举例说明[见图]: 水果超市,所有同类的水果摆放在一起&#xf…

PHP 框架安全:ThinkPHP 序列 漏洞测试.

什么是 ThinkPHP 框架. ThinkPHP 是一个流行的国内 PHP 框架,它提供了一套完整的安全措施来帮助开发者构建安全可靠的 web 应用程序。ThinkPHP 本身不断更新和改进,以应对新的安全威胁和漏洞。 ThinkPHP 框架的安全特性: (1) 输入过滤和验证…

【go项目01_学习记录05】

学习记录 1 依赖管理 Go Modules1.1 弃用 $GOPATH1.2 Go Modules 日常使用1.2.1 初始化生成go.mod文件1.2.2 Go Proxy代理1.2.3 go.mod文件查看1.2.4 go.sum文件查看1.2.5 indirect 含义1.2.6 go mod tidy 命令1.2.7 清空 Go Modules 缓存1.2.8 下载依赖1.2.9 所有 Go Modules …

[qnx] 通过zcu104 SD卡更新qnx镜像的步骤

0. 概述 本文演示如果给Xlinx zcu104开发板刷入自定义的qnx镜像 1.将拨码开关设置为SD卡启动 如下图所示,将1拨到On,2,3,4拨到Off,即为通过SD启动。 2.准备SD卡中的内容 首先需要将SD格式化为FAT32的(如果已经是FAT32格式,则…

网络安全之OSI七层模型详解

OSI七层模型分为控制层(前三层)和数据层(后四层)。从第七层到一层为; 应用层(7)接收数据 表示层(6)将数据翻译为机器语言 会话层(5)建立虚连接…

C++证道之路第十八章探讨C++新标准

一、复习前面介绍过的C11新功能 1、新类型 C11新增了类型long long 和unsigned long long 新增了类型char16_t 和char32_t 2、统一的初始化 C11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可以用于所有内置类型和用户定义的类…

可编程 IP 新星 Story Protocol 何以引领链上文艺复兴浪潮?

当前,随着 Web3 行业发展进入全新阶段,与生成式人工智能(AIGC)技术融合正在创造潜力新星项目。也是目前的互联网生态下,任何普通民众都有权利创作高质量的音乐、艺术、散文和视频内容,带来了用户生成内容&a…

算法(C++

题目:螺旋矩阵(59. 螺旋矩阵 II - 力扣(LeetCode)) 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入&am…

Vue进阶之Vue项目实战(二)

Vue项目实战 构建基础框架路由 项目( v1.0,base-app-layer)导航 router物料编排选型 插件化插件化平时写代码场景 配置器开发 构建基础框架 路由 路由分类: memoryHistory:内存路由,路由信息记录在内存中&#xff0…

解决github的remote rejected|git存储库的推送保护

前言 git存储库的推送保护。当你试图推送代码到GitHub仓库时,由于存在与主分支(master)相关的仓库规则违规行为,推送会被拒绝了。这种保护机制帮助确保只有经过授权和符合规定的代码才能被合并到主分支,从而保护了主分…

Unreal Engine插件打包技巧

打开UE工程,点击编辑,选择插件,点击"打包"按钮,选择输出目录UE4.26版本打包提示需要VS2017问题解决 1)用记事本打开文件【UE4对应版本安装目录\Epic Games\UE_4.26\Engine\Build\BatchFiles\RunUAT.bat】 2&…

Linux网络部分——DNS域名解析服务

目录 1. 域名结构 2. 系统根据域名查找IP地址的过程 3.DNS域名解析方式 4.DNS域名解析的工作原理【☆】 5.域名解析查询方式 6.搭建主从DNS域名服务器 ①初始化操作主服务器和从服务器,安装BIND软件 ②修改主服务器的主配置文件、区域配置文件、区域数…