MLP实现fashion_mnist数据集分类(1)-模型构建、训练、保存与加载(tensorflow)

1、查看tensorflow版本

import tensorflow as tfprint('Tensorflow Version:{}'.format(tf.__version__))
print(tf.config.list_physical_devices())

在这里插入图片描述

2、fashion_mnist数据集下载与展示

(train_image,train_label),(test_image,test_label) = tf.keras.datasets.fashion_mnist.load_data()
print(train_image.shape)
print(train_label.shape)
print(test_image.shape)
print(test_label.shape)

在这里插入图片描述

import matplotlib.pyplot as plt
# plt.imshow(train_image[0])  # 此处为啥是彩色的?def plot_images_lables(images,labels,start_idx,num=5):fig = plt.gcf()fig.set_size_inches(12,14)for i in range(num):ax = plt.subplot(1,num,1+i)ax.imshow(images[start_idx+i],cmap='binary')title = 'label=' + str(labels[start_idx+i])ax.set_title(title,fontsize=10)ax.set_xticks([])ax.set_yticks([])plt.show()
plot_images_lables(train_image,train_label,0,5)
# plot_images_lables(test_image,test_label,0,5)

在这里插入图片描述

3、数据预处理

X_train,X_test = tf.cast(train_image/255.0,tf.float32),tf.cast(test_image/255.0,tf.float32) # 归一化
y_train,y_test = train_label,test_label # 此处对y没有做onehot处理,需要使用稀疏交叉损失函数

4、模型构建

from keras import Sequential
from keras.layers import Flatten,Dense,Dropout
from keras import Inputmodel = Sequential()
model.add(Input(shape=(28,28)))
model.add(Flatten())
model.add(Dense(units=256,kernel_initializer='normal',activation='relu'))
model.add(Dropout(rate=0.1))
model.add(Dense(units=64,kernel_initializer='normal',activation='relu'))
model.add(Dropout(rate=0.1))
model.add(Dense(units=10,kernel_initializer='normal',activation='softmax'))
model.summary()

在这里插入图片描述

5、模型配置

model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['acc'])

6、模型训练

H = model.fit(x=X_train,y=y_train,validation_split=0.2,# validation_data=(X_test,y_test),epochs=10,batch_size=128,verbose=1)

在这里插入图片描述

plt.plot(H.epoch, H.history['loss'], label='loss')
plt.plot(H.epoch, H.history['val_loss'], label='val_loss')
plt.legend()

在这里插入图片描述

plt.plot(H.epoch, H.history['acc'], label='acc')
plt.plot(H.epoch, H.history['val_acc'], label='val_acc')
plt.legend()

在这里插入图片描述

7、模型评估

model.evaluate(X_test,y_test)

在这里插入图片描述

8、模型预测

import numpy as np
import matplotlib.pyplot as pltdef pred_plot_images_lables(images,labels,start_idx,num=5):# 预测res = model.predict(images[start_idx:start_idx+num])res = np.argmax(res,axis=1)# 画图fig = plt.gcf()fig.set_size_inches(12,14)for i in range(num):ax = plt.subplot(1,num,1+i)ax.imshow(images[start_idx+i],cmap='binary')title = 'label=' + str(labels[start_idx+i]) + ', pred=' + str(res[i])ax.set_title(title,fontsize=10)ax.set_xticks([])ax.set_yticks([])plt.show()
pred_plot_images_lables(X_test,y_test,0,5)

在这里插入图片描述

9、模型保存与加载

import numpy as nptf.keras.models.save_model(model,"model.keras")
loaded_model = tf.keras.models.load_model("model.keras")
# assert np.allclose(model.predict(X_test[:5]), loaded_model.predict(X_test[:5]))
print(np.argmax(model.predict(X_test[:5]),axis=1))
print(np.argmax(loaded_model.predict(X_test[:5]),axis=1))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/832342.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

张大哥笔记:卖盗版网课,获利 100 万被抓

这几天刷视频,看到一个新闻,某大学生卖盗版网课,把别人2000多正版网课,以做活动名义售卖20元,获利100多万被抓。 下方图片来自:极目新闻 卖这种盗版网课,门槛低,成本低,…

解决3D模型只显示线框材质的方法---模大狮模型网

在3D建模和渲染过程中,正确的材质和纹理是呈现逼真效果的关键。然而,有时候用户可能会遇到一个常见问题,即3D模型在渲染或查看时只显示线框材质,而没有正确的表面纹理和颜色。本文将介绍解决这一问题的几种方法,帮助用…

7 人赚 960 亿美元,数字天才的首次独舞

巴菲特股东大会 一年一度的巴菲特股东大会如常召开,只不过这次坐在老爷子左手边的不再是老搭档查理芒格,而是钦点的未来继任者,格雷格阿贝尔。 随着芒格(99岁)的离开,巴菲特(93岁)也…

【.sh】Shell 脚本文件的基础内容

目录 🌊1. 基础知识 🌊2. 简单示例 🌍2.1 示例一 输出"Hello, World!" 🌍2.2 示例二 输入输出创建 🌊1. 基础知识 .sh文件是什么? .sh文件即 Shell 脚本文件,通常用来执行一系列…

Ranni: Taming Text-to-Image Diffusion for Accurate Instruction Following

Ranni: Taming Text-to-Image Diffusion for Accurate Instruction Following abstract 我们引入了一个语义面板作为解码文本到图像的中间件,支持生成器更好地遵循指令 Related work 最近的工作还通过包含额外的条件(如补全掩码[15,45]、…

10 华三vlan技术介绍

AI 解析 -Kimi-ai Kimi.ai - 帮你看更大的世界 (moonshot.cn) 虚拟局域网(VLAN)技术是一种在物理网络基础上创建多个逻辑网络的技术。它允许网络管理员将一个物理网络分割成多个虚拟的局域网,这些局域网在逻辑上是隔离的,但实际…

【LeetCode刷题记录】105. 从前序与中序遍历序列构造二叉树 106. 从中序与后序遍历序列构造二叉树

105 从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,7], inorder [9,3,1…

Pandas入门篇(三)-------数据可视化篇2(pandas-plot篇)

目录 概述一、格式1. 生成pandas.plotting对象来生成图表2. 调用plot()函数来生成图表3.支持的图表类型 二、单变量绘图常用图表1. 柱状图(bar)使用场景代码实现 2. 折线图(line)(默认即为折线图)适用场景代…

计算机毕业设计 | vue+springboot 在线花店后台管理系统(附源码)

1,绪论 1.1 项目背景 随着社会发展,网上购物已经成为我们日常生活的一部分。但是,至今为止大部分电商平台都是从人们日常生活出发,出售都是一些日常用品比如:食物、服装等等,并未发现一个专注于鲜花的电商…

从一到无穷大 #25 DataFusion:可嵌入,可扩展的模块化工业级计算引擎实现

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作),由 李兆龙 确认,转载请注明版权。 文章目录 引言架构总览与可扩展性Catalog and Data SourcesFront End逻辑计划与逻辑计划优化器…

使用台式机打开腾讯会议后打开麦克风提示:未检测到可用的麦克风,请插入设备后重试

解决方法如下: 台式机是不带输入设备的,也就是不自带麦克风的,而笔记本电脑是带的。这时候在台式机上可以通过插入有线耳机充当输入设备,就可以正常使用麦克风功能了。 插入之后,可以看到设置里面声音界面包含了一个…

new mars3d.control.MapSplit({实现点击卷帘两侧添加不同图层弹出不同的popup

new mars3d.control.MapSplit({实现点击卷帘两侧添加不同图层弹出不同的popup效果: 左侧: 右侧: 说明:mars3d的3.7.12以上版本才支持该效果。 示例链接: 功能示例(Vue版) | Mars3D三维可视化平台 | 火星科技 相关代…

关于视频号小店,常见问题解答,开店做店各方面详解

大家好,我是电商笨笨熊 视频号小店作为今年风口,一个新推出的项目,凭借着自身流量加用户群体的优势吸引了不少的电商玩家。 但对于很多玩家来说,视频号小店完全是一个新的项目、新的领域,因此也会存在很多的疑问&…

数据分析从入门到精通 2.pandas修真之前戏基础

从爱上自己那天起,人生才真正开始 —— 24.5.6 为什么学习pandas numpy已经可以帮助我们进行数据的处理了,那么学习pandas的目的是什么呢? numpy能够帮助我们处理的是数值型的数据,当然在数据分析中除了数值型的数据还有好多其他类型…

接口自动化测试之-requests模块详解

一、requests背景 Requests 继承了urllib2的所有特性。Requests支持HTTP连接保持和连接池,支持使用cookie保持会话,支持文件上传,支持自动确定响应内容的编码,支持国际化的 URL 和 POST 数据自动编码。 二、requests安装 利用p…

CI/CD笔记.Gitlab系列.新用户管理

CI/CD笔记.Gitlab系列 新用户管理 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_285502…

记一次攻防演练

看到一处登录后台,各种操作都尝试过无果,翻了一下js,看到一处文件上传接口泄露(没图了,已经整改了) 构造上传数据包,很nice,上传成功 直接连接webll,搭建隧道进行内网穿透 翻看配置文件&#xf…

简单说说 gather_plan_statistics

DBA的日常核心工作之一是对线上有性能问题的SQL语句进行优化。其中优化SQL语句的最关键的一步是得到SQL的执行计划。那么一个常见的问题来了。如何得到一个SQL语句的真实执行计划?方法有很多。今天说其中一种方法就是使用 gather_plan_statistics(收集计划统计信息) 首先简单…

东方生物工程设备技术有限责任公司带您解读2024第12届上海生物发酵展览会

参展企业介绍 镇江东方生物工程设备技术有限责任公司是国内规模最大的自动成套生化反应设备的专业制造商,也是江苏省最早的专业发酵罐制造公司。公司主要从事液体发酵设备、固体发酵设备、特殊新型生化反应设备以及自动生化反应过程控制系统的研究、开发与制造。 公…

鸿蒙内核源码分析(事件控制篇) | 任务间多对多的同步方案

官方概述 先看官方对事件的描述. 事件(Event)是一种任务间通信的机制,可用于任务间的同步。 多任务环境下,任务之间往往需要同步操作,一个等待即是一个同步。事件可以提供一对多、多对多的同步操作。 一对多同步模型…