Pytorch 之torch.nn初探 卷积--Convolution Layers

任务描述

本关任务:

本关提供了一个Variable 类型的变量input,按照要求创建一 Conv1d变量conv,对input应用卷积操作并赋值给变量 output,并输出output 的大小。

相关知识

卷积的本质就是用卷积核的参数来提取原始数据的特征,通过矩阵点乘的运算,提取出和卷积核特征一致的值。

卷积层是用一个固定大小的矩形块去席卷原始数据,将原始数据分成一个个和卷积核大小相同的小块,然后将这些小块和卷积核相乘输出一个卷积值(注意这里是一个单独的值,不再是矩阵了)。

这里我们拿最常用的 conv1d举例说明卷积过程的计算。

conv1d

基本形式:

torch.nn.Conv1d (in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

用途:对输入样本应用一维卷积核

输入大小为(N,C_{in},L)

输出(N,C_{out},L_{out})

这里imes代表 the valid cross -correlation operator。

参数说明:

参数名

参数类型

说明

默认值

in_channels

int

输入图像中的通道数量

out_channels

int

卷积产生的通道数

kernel_size

int或 tuple

循环内核的大小

stride

int or tuple, optional

滑动窗口,指每次卷积对原数据滑动n个单元格。

默认为1

padding

int or tuple, optional

是否对输入数据填充0

默认为0(不填充)

dilation

int or tuple, optional

卷积核之间的空格

默认为1

groups

int ,optional

将输入数据分组,通常不用管这个参数

bias

boolean ,optional

偏移量参数,一般也不用管

optional 表示可选 padding可以将输入数据的区域改造成是卷积核大小的整数倍,这样对不满足卷积核大小的部分数据就不会忽略了。通过padding参数指定填充区域的高度和宽度。

维度:Input : (N,C_{in},L_{in})

Output :(N,C_{out},L_{out})
Lout=floor((L_{in}+2))

变量:

  • weight (Tensor) – 模块的卷积核权重,也就是卷积核本。是一个三维数组(out_channels, in_channels, kernel_size)。out_channels是卷积核输出层的神经元个数,也就是这层有多少个卷积核;in_channels是输入通道数;kernel_size是卷积核的宽度。
  • bias (Tensor) – 卷积核输出层的偏移量。

应用示例:

m = nn.Conv1d(16, 33, 3, stride=2)
input = Variable(torch.randn(20, 16, 50))
output = m(input)
print(output.size())

输出结果: torch.Size([20, 33, 24])

conv1d是一维卷积,它和conv2d的区别在于只对宽度进行卷积,对高度不卷积。

conv2d

基本形式:

torch.nn.Conv2d (in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

用途:对输入样本应用二维卷积核

输入大小为(N,C_{in},H,W)

输出(N,C_{out},H_{out},W_{out})

这里imes代表 the valid 2D cross -correlation operator

参数说明:

与 conv1d 相同

维度:

Input : (N,C_{in},H,W)

Output :(N,C_{out},H_{out},W_{out})

H_{out}=floor((H_{in}+2))

W_{out}=floor((W_{in}+2))

应用示例:

#Conv2d# With square kernels and equal stride
m = nn.Conv2d(16, 33, 3, stride=2)# non-square kernels and unequal stride and with padding
m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))input = Variable(torch.randn(20, 16, 50, 100))
output = m(input)
print(output.size())

输出结果: torch.Size([20, 33, 28, 100])

编程要求

本关涉及的代码文件为convolution.py,本次编程任务是补全右侧代码片段中Begin至End中间的代码,具体要求如下:

  • 创建一个in_channels=16, out_channels=33, kernel_size=3, stride=2的Conv1d变量conv;
  • 对input应用卷积操作并赋值给变量 output;
  • 输出 output 的大小。
  • 具体请参见后续测试样例。

测试说明

测试过程:

  • 本关涉及的测试文件为convolution.py,运行用户填写后的程序判断正误。
  • 测试程序将检测两个方面:是否包含特定的代码行以及程序的输出是否正确,若两个方面均正确则输出下面的预期输出,否则报错。
  • 请注意输出格式及规范。
  • 注意,在声明变量时请按照提示命名,否则将会报错。

以下是测试样例:

测试输入: 预期输出: torch.Size([10, 24,13])

Congratulation!

代码实战

import torch
import torch.nn as nn
from torch.autograd import Variableinput = Variable(torch.randn(10, 16, 40))#/********** Begin *********/#创建一个in_channels=16, out_channels=24, kernel_size=4, stride=3的Conv1d变量conv
conv = nn.Conv1d(16, 24, 4, stride=3)#对input应用卷积操作并赋值给变量 output
output=conv(input)#输出 output 的大小,要求输出不换行
print(output.size())#/********** End *********/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/829456.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端HTML5学习1(新增布局,状态,列表,文本,表单控件标签)

前端HTML5学习1(新增布局,状态,列表,文本,表单控件标签) 新增布局标签新增状态标签新增列表标签新增文本标签新增表单控件属性input新增属性值 新增布局标签 HTML5 引入了许多新的语义化标签,用…

【MySQL】A01、性能优化-参数监控分析

1、参数监控 1.1、MySQL command 查看 mysql>SHOW STATUS; (服务器状态变量,运行服务器的统计和状态指标) mysql> SHOW VARIABLES;(服务器系统变量,实际上使用的变量的值) mysql> SHOW STATUS …

SpringBoot---------Hutool

第一步&#xff1a;引入依赖 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-parent</artifactId><version>5.7.17</version></dependency> 第二步&#xff1a;各种用法 ①生成随机数 //生成验证码 String s …

Linux磁盘管理与文件系统

目录 一.磁盘基础 磁盘结构 二.MBR 磁盘分区结构 三.文件系统类型 XFS文件系统 SWAP&#xff0c;交换文件系统 四.磁盘分区 linux系统添加并使用新硬盘的步骤 五 .创建文件系统 mkfs mkfs命令 挂载、卸载文件系统 挂载文件系统、ISO镜像到指定文件夹 ​编辑umount…

Redis可视化工具RedisInsight

下载地址&#xff1a;RedisInsight - The Best Redis GUIRedisInsight provides an intuitive and efficient graphical interface for Redis, allowing you to interact with your databases and manage your data.https://redis.com/redis-enterprise/redis-insight/#insight…

IDEA上配置Maven环境

1.选择IDEA中的Setting 2.搜索maven 3.设置IDEA使用本地安装的Maven&#xff0c;并修改配置文件路径 配置文件&#xff0c;本地仓库&#xff0c;阿里云仓库配置及路径教程 在IDEA上配置完成。

【Linux内核驱动基础】从零开始手搓一个从上层应用到底层驱动的IO口代码

【Linux内核驱动基础】从零开始手搓一个从上层应用到底层驱动的IO口控制代码 文章目录 【Linux内核驱动基础】从零开始手搓一个从上层应用到底层驱动的IO口控制代码一、驱动基础认知1.为什么要学会写驱动2.文件名与设备号3.open函数从上层打通到底层硬件的详细过程 二、基于内核…

【强训笔记】day4

NO.1 思路&#xff1a;利用滚动数组&#xff0c;迭代一个Fibonacci数列&#xff0c;给出三个值进行循环迭代&#xff0c;当n<c时&#xff0c;说明n在b和c之间&#xff0c;这里只需要返回c-n和n-b的最小值就可以了。 代码实现&#xff1a; #include<iostream>using n…

打印给定数组中每一个数字

如何给定1-10的数字 #include<stdio.h> int main() {int arr[] { 1,2,3,4,5,6,7,8,9,10 };// 0 9//[]--下标引用操作符int i;int sz sizeof(arr) / sizeof(arr[0]);//10个数for (i 0; i < sz; i){printf("%d ", arr[i]);}re…

centos7使用源码安装方式redis

安装编译源码的工具gcc yum install -y gcc下载源码 源码下载地址 https://download.redis.io/releases/ 注意事项 不建议安装最新版本redis&#xff0c;所以我这里选择6.2.6版本 下载 wget https://download.redis.io/releases/redis-6.2.6.tar.gz解压 tar -zxvf redis-…

单片机通讯协议

参考&#xff1a;江科大单片机教程 STM32入门教程-2023版 细致讲解 中文字幕_哔哩哔哩_bilibili IIC通讯协议SPI通信协议UARTCANUSB速度100k-400khz4Mhz-线数2 CLK,DATA4CLK,ENB,IO,OI额外设备一主多从一主多从 一般不用自己写&#xff0c;都有相应的库或官方提供相应的&#…

舌头分割YOLOV8-SEG

舌头分割&#xff0c;基于YOLOV8-SEG&#xff0c;训练得到PT模型&#xff0c;然后转换成ONNX&#xff0c;OPENCV的DNN调用&#xff0c;从而摆脱YOLO依赖&#xff0c;支持C,PYTHON,ANDROID开发 舌头分割YOLOV8-SEG

使用预训练模型构建自己的深度学习模型(迁移学习)

在深度学习的实际应用中&#xff0c;很少会去从头训练一个网络&#xff0c;尤其是当没有大量数据的时候。即便拥有大量数据&#xff0c;从头训练一个网络也很耗时&#xff0c;因为在大数据集上所构建的网络通常模型参数量很大&#xff0c;训练成本大。所以在构建深度学习应用时…

OS对软件的管理,进程,PCB、子进程

进程 可执行程序加载到内存中&#xff0c;操作系统为内个程序都形成一个PCB对象&#xff08;结构体对象&#xff09;&#xff0c;PCB里存放着这个程序的所有的属性。进程可执行程序PCB &#xff0c;CPU执行程序也是先通过该程序的PCB找到相应的程序代码&#xff0c;然后一条一…

ThinkPHP5 SQL注入漏洞敏感信息泄露漏洞

1 漏洞介绍 ThinkPHP是在中国使用极为广泛的PHP开发框架。在其版本5.0&#xff08;<5.1.23&#xff09;中,开启debug模式&#xff0c;传入的某参数在绑定编译指令的时候又没有安全处理&#xff0c;预编译的时候导致SQL异常报错。然而thinkphp5默认开启debug模式&#xff0c…

分享一些实用的工具

1、amCharts5&#xff1a;模拟航线飞行/业务分布图/k线/数据分析/地图等 网址&#xff1a; JavaScript mapping library: amCharts 5https://www.amcharts.com/javascript-maps/ Demo地址&#xff1a;Chart Demos - amChartshttps://www.amcharts.com/demos/#maps 他分为amC…

小龙虾优化算法(Crayfish Optimization Algorithm,COA)

小龙虾优化算法&#xff08;Crayfish Optimization Algorithm&#xff0c;COA&#xff09; 前言一、小龙虾优化算法的实现1.初始化阶段2.定义温度和小龙虾的觅食量3.避暑阶段&#xff08;探索阶段&#xff09;4.竞争阶段&#xff08;开发阶段&#xff09;5.觅食阶段&#xff08…

【誉天战报】3月HCIE战报火热来袭!新增45位同学通过认证!

2024年3月&#xff0c;誉天教育共有45名学员顺利通过了HCIE认证&#xff0c;其中&#xff1a;云计算20人、数通18人、存储5人、云服务2人。让我们一起祝贺他们吧~ 誉天教育是华为优选级授权培训合作伙伴&#xff0c;专业从事华为授权认证课程实战技能培训。连续13年荣获“华为优…

和林曦老师一起读书吧 | 愿我们:只生欢喜不生愁

今天&#xff0c;想和你一起来读书&#xff0c;林曦老师的《只生欢喜不生愁》。    这本书的名字很有意味&#xff0c;它来自于清代《养真集》中的一句话&#xff1a;自古神仙无别法&#xff0c;只生欢喜不生愁。      我们会羡慕这样的状态&#xff1a;只生欢喜不生愁…