线性代数 --- 计算斐波那契数列第n项的快速算法(矩阵的n次幂)

 计算斐波那契数列第n项的快速算法(矩阵的n次幂)

The n-th term of Fibonacci Numbers:

        斐波那契数列的是一个古老而又经典的数学数列,距今已经有800多年了。关于斐波那契数列的计算方法不难,只是当我们希望快速求出其数列中的第100,乃至第1000项时,有没有又准又快的方法,一直是一个值得探讨和研究的问题。笔者(松下J27)在这篇文章中,就介绍了一种基于线性代数的快速算法,即,基于矩阵的n次幂找到斐波那契数列的第n项。这是我在MIT线性代数的公开课中看到的,并以此文记录下来。

(意大利数学家斐波那契,图片来源于参考文献【1】) 

已知斐波那契数列的数学表示方式如下:

Fibonacci:0,1,1,2,3,5,8,13,21,34......

他始于数列的前两个初始值0,1,后面所有的项都是前两项的和,依此类推得到:

0+1=11+1=21+2=32+3=53+5=8。。。

        基于上面的计算规律,假设我用F_{i}来表示该数列的第i个数的话,那斐波那契数列用代数的方式可写成两个初值和一个递归公式的组合,即:

F_{0}=0,F_{1}=1

F_{i+2}=F_{i}+F_{i+1},\: i=0,1,2...

        现在把上面的公式用矩阵和向量的方式来表示,以便于用线性代数来分析:

1,先把初值用向量u0来表示

u_{0}=\begin{bmatrix} F_{0}\\ F_{1} \end{bmatrix}=\begin{bmatrix} 0\\ 1\end{bmatrix}

2,用向量u_{i}表示数列中的第n项。

 u_{i}=\begin{bmatrix} F_{i}\\ F_{i+1} \end{bmatrix}

3,如此一来根据递归公式就能写出第i+1项u_{i+1}

u_{i+1}=\begin{bmatrix} F_{i+1}\\ F_{i+2} \end{bmatrix}=\begin{bmatrix} F_{i+1}\\ F_{i}+F_{i+1} \end{bmatrix}

4,用矩阵来表示从第i项u_{i}到第i+1项u_{i+1}的过程

u_{i+1}=\begin{bmatrix} F_{i+1}\\ F_{i+2} \end{bmatrix}=\begin{bmatrix} F_{i+1}\\ F_{i}+F_{i+1} \end{bmatrix}=\begin{bmatrix} 0 &1 \\ 1& 1\end{bmatrix}\begin{bmatrix} F_{i}\\ F_{i+1} \end{bmatrix}=\begin{bmatrix} 0 &1 \\ 1& 1\end{bmatrix}u_{i}

其中,参与计算的矩阵A为:

A=\begin{bmatrix} 0& 1\\ 1&1 \end{bmatrix}

         现在,我们知道了初始向量u_{0},也知道如果计算u_{i+1},我们就能通过线性代数中矩阵与向量的计算来计算斐波那契数列中的任意一项:

        可以看到,如果你要计算第100项,不出意外,只要把上述步骤继续下去一定能够找到。另外,如果把上述计算中的三次计算合成一部,就是三个矩阵A连续相乘后,再乘以u0。

        这就是说,斐波那契数列中第n项的计算公式应该是:

u_{n}=A\cdot A\cdot A\cdot A...\cdot Au0=A^{n}u0

u_{n}=A^{n}u0 (式1) 

这里要注意的是,根据这种方法算出来的是一个向量,而我们需要的结果,即,第n项是该向量中的第一个元素。


引入矩阵的对角化:

        熟悉线性代数的朋友看到A的n次幂时,马上就会想到是否可以通过特征向量矩阵X特征值矩阵\Lambda对A进行对角化。

线性代数 --- 矩阵的对角化以及矩阵的n次幂-CSDN博客文章浏览阅读1k次,点赞15次,收藏9次。本文从矩阵A的对角化开始,一直聊到了对角化的应用,并以一个A的n次幂为例子结尾。https://blog.csdn.net/daduzimama/article/details/138088128

因为,如果方阵A可以被对角化为:

A=X\Lambda X^{-1}

那么上面推导出来的斐波那契数列的第n项的计算公式就能简化为:

u_{n}=A\cdot A\cdot A\cdot A...\cdot Au0=A^{n}u0\Rightarrow

u_{n}=(X\Lambda X^{-1})\cdot (X\Lambda X^{-1})\cdot (X\Lambda X^{-1})...\cdot (X\Lambda X^{-1})u0=X\Lambda ^{n}X^{-1}u0

u_{n}=X\Lambda ^{n}X^{-1}u0 , (式2) 

 

现在我们试着用(式2)去计算斐波那契数列的第100项:

第一步,计算矩阵A的特征向量与特征值:

\lambda _{1}=-0.61803399,x_{1}=\begin{bmatrix}-0.85065081 \\ 0.52573111\end{bmatrix}

\lambda _{2}=1.61803399,x_{2}=\begin{bmatrix}-0.52573111\\ -0.85065081\end{bmatrix}

 通过计算得出了两个不同的特征值,说明矩阵A可以对角化。

第二步,构建特征向量矩阵X,特征值矩阵\Lambda和特征向量矩阵的逆:

X=\begin{bmatrix} -0.85065081&-0.52573111 \\ 0.52573111&-0.85065081 \end{bmatrix}

\Lambda =\begin{bmatrix} -0.61803399 &0 \\ 0 & 1.61803399 \end{bmatrix}

 X^{-1}=\begin{bmatrix} -0.85065081&0.52573111 \\ -0.52573111&-0.85065081 \end{bmatrix}

第三步,计算特征值矩阵\Lambda的100次幂:

 \Lambda ^{100}=\begin{bmatrix} -0.61803399^{100} &0 \\ 0 & 1.61803399^{100} \end{bmatrix}

=\begin{bmatrix}1.26251334E-21 &0 \\ 0 & 7.92070840E+20 \end{bmatrix}

第四步,基于(式2)去计算第100项的值:

 u_{100}=\begin{bmatrix} 3.54224848E+20\\ 5.73147844E+20 \end{bmatrix}

其中,第100项的值为:

F_{100}=3.54224848E+20

进一步简化:

如果我能把u0表示成所有特征向量的线性组合的话,就能更进一步简化计算:

u_{0}=c_{1}x_{1}+c_{2}x_{2}...+c_{n}x_{n}=Xc (式3) 

其中,权重系数向量c等于:

c=X^{-1}u_{0} (式4) 

如此一来,斐波那契的第n项的计算公式(式1)就变成了:

u_{n}=A^{n}(c_{1}x_{1}+c_{2}x_{2}...+c_{n}x_{n})=c_{1}A^{n}x_{1}+c_{2}A^{n}x_{2}...+c_{n}A^{n}x_{n} (式5) 

 又因为这里的x都是特征向量,根据特征向量的性质,我们有Key Equation:

Ax=\lambda x

对于上式中的第一项c_{1}A^{n}x_{1}有:

c_{1}A^{n}x_{1}=c_{1}A\cdot A...\cdot A\cdot Ax_{1}=c_{1}A\cdot A...\cdot A\cdot \lambda _{1}x_{1}

因为\lambda _{1}是一个系数,所以我们把他提到前面去:

c_{1}A^{n}x_{1}=c_{1}\lambda _{1}A\cdot A...\cdot Ax_{1}

这样一来又出现了一个\lambda _{1},继续:

c_{1}A^{n}x_{1}=c_{1}\lambda _{1}A\cdot A...\cdot \lambda _{1}x_{1}

如此反复,一直到第n个乘法:

c_{1}A^{n}x_{1}=c_{1}\lambda _{1}^{n}A

依此类推,(式5)可改写成:

u_{n}=c_{1}\lambda _{1}^{n}x_{1}+c_{2}\lambda _{2}^{n}x_{2}...+c_{n}\lambda _{n}^{n}x_{n} (式6) 

 (式6) 也可以写成:

u_{n}=c_{1}\lambda ^{n}x_{1}+c_{2}\lambda ^{n}x_{2}...+c_{n}\lambda ^{n}x_{n}=X\Lambda ^{n}c (式7) 

这一点也可以通过把 (式3)代入(式2)得到(式7)

u_{n}=X\Lambda ^{n}X^{-1}u0=X\Lambda ^{n}X^{-1}(Xc)=X\Lambda ^{n}c

这里面最重要的是(式6),因为他把计算分离开了,分成了一个个常数与向量的乘积之和。

现在针对这一简化算法做一个小结,并以求斐波那契的第100项为例:

第一步,优先使用(式4)算出权重向量c

c=X^{-1}u_{0}=\begin{bmatrix} 0.52573111\\ -0.85065081 \end{bmatrix} 

\Rightarrow c_{1}=0.52573111, c_{2}=-0.85065081 

 

第二步,分别计算c_{1}\lambda _{1}^{100}x_{1}c_{2}\lambda_{2} ^{100}x_{2},其中c和\lambda都是常数。

 

第三步,求和。把第二步的结果加在一起,求出最终的结果。在本例中,因为c_{1}\lambda _{1}^{100}x_{1}中的元素几乎为0,所以他们二者的和几乎约等于c_{2}\lambda_{2} ^{100}x_{2}

u_{100}=c_{1}\lambda _{1}^{100}x_{1}+c_{2}\lambda _{2}^{100}x_{2}=\begin{bmatrix} F_{100}\\ F_{101} \end{bmatrix}

最终,得到了同样正确的结果:

F_{100}=3.54224848E+20


 (全文完) 

--- 作者,松下J27

参考文献(鸣谢):

1,https://zh.wikipedia.org/wiki/%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91

2, Lec22_对角化和矩阵乘幂_哔哩哔哩_bilibili

(配图与本文无关) 

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/829171.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql8.0免安装版windows

1.下载 MySQL下载链接 2.解压与新建my.ini文件 解压的路径最好不要有中文路径在\mysql-8.0.36-winx64文件夹下新建my.ini文件,不建data文件夹(会自动生成) [mysqld] # 设置3306端口 port3306 # 设置mysql的安装目录(尽量用双斜杠\\,单斜杠\可能会报错) basedirD:\…

uniapp获取当前位置及检测授权状态

uniapp获取当前位置及检测授权定位权限 文章目录 uniapp获取当前位置及检测授权定位权限效果图创建js文件permission.jslocation.js 使用 效果图 Android设备 点击 “设置”,跳转应用信息,打开“权限即可”; 创建js文件 permission.js 新建…

3d合并的模型为什么没有模型---模大狮模型网

在3D建模中,合并模型是常见的操作,它可以将多个模型合并成一个整体。然而,有时候在合并后却发现部分模型消失了,这可能会让人感到困惑和失望。本文将探讨为什么合并的3D模型中会出现没有模型的情况,并提供一些解决方法…

Web前端一套全部清晰 ③ day2 HTML 标签综合案例

别让平淡生活&#xff0c;耗尽所有向往 —— 24.4.26 综合案例 —— 一切都会好的 网页制作思路&#xff1a;从上到下&#xff0c;先整体到局部&#xff0c;逐步分析制作 分析内容 ——> 写代码 ——>保存——>刷新浏览器&#xff0c;看效果 <!DOCTYPE html> &l…

ubuntu22 部署fastDFS单节点和集群,整合Spring Boot(刚部署成功)

ubuntu22 部署fastDFS单节点和集群 一、先准备1、所需依赖安装2、下载安装包 二、安装FastDFS单节点1、libfastcommon安装1.1、创建软连接 2、安装fastDFS2.1、fastDFS目录简单介绍2.2、创建软连接 3、配置和启动Tracker服务3.1、修改Tracker配置文件3.2、启动Tracker 4、配置和…

【笔试强训】除2!

登录—专业IT笔试面试备考平台_牛客网牛客网是互联网求职神器&#xff0c;C、Java、前端、产品、运营技能学习/备考/求职题库&#xff0c;在线进行百度阿里腾讯网易等互联网名企笔试面试模拟考试练习,和牛人一起讨论经典试题,全面提升你的技术能力https://ac.nowcoder.com/acm/…

IDEA插件分享 - enum-quick-generate 实现枚举类自动生成

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…

代码随想录算法训练营DAY38|C++动态规划Part.1|动态规划理论基础、509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯

文章目录 动态规划理论基础什么是动态规划动态规划的解题步骤DP数组以及下标的含义递推公式DP数组初始化DP数组遍历顺序打印DP数组动态规划五部曲 动态规划应该如何debug 509.斐波那契数什么是斐波那契数列动态规划五部曲确定dp数组下标以及含义确定递推公式dp数组如何初始化确…

数据分析:甲基化分析-从DNA methylation的IDAT文件到CpG site的Beta values

介绍 DNA Methylation和疾病的发生发展存在密切相关&#xff0c;它一般通过CH3替换碱基5‘碳的H原子&#xff0c;进而调控基因的转录。常用的DNA methylation是Illumina Infinium methylation arrays&#xff0c;该芯片有450K和850K&#xff08;也即是EPIC&#xff09;。 该脚…

Mac虚拟机装Windows Mac环境安装Win虚拟机教程 macbookpro安装windows虚拟机

在如今多元的数字时代&#xff0c;我们经常需要在不同的操作系统环境下进行工作和学习。而对于Mac用户来说&#xff0c;有时候需要在自己的电脑上安装Windows操作系统&#xff0c;以体验更多软件及功能&#xff0c;而在Mac安装Windows虚拟机是常用的一种操作。下面就来看看Mac虚…

flutter开发实战-build apk名称及指令abiFilters常用gradle设置

flutter开发实战-build apk名称及指令abiFilters常用gradle设置 最近通过打包flutter build apk lib/main.dart --release&#xff0c;发现apk命名规则需要在build.gradle设置。这里记录一下。 一、apk命名规则 在android/app/build.gradle中需要设置 android.applicationVa…

数字身份管理:Facebook如何利用区块链技术?

随着数字化进程的加速&#xff0c;个人身份管理已成为一个关键议题。在这方面&#xff0c;区块链技术正在逐渐展现其巨大潜力。作为全球最大的社交媒体平台&#xff0c;Facebook也在积极探索和应用区块链技术来改进其数字身份管理系统。本文将深入探讨Facebook如何利用区块链技…

VSCODE通过SFTP链接VM进行开发

在vscode插件里面搜索sftp&#xff0c;安装。 安装之后&#xff0c;按ctrlshiftp&#xff0c;找到sftp的config 然后填写刚刚的IP&#xff0c;然后是你的用户名密码 如果是通过密钥链接的话就是这样配置 然后切换到这个sftp的tab里面 然后在你的项目右键&#xff0c;然后选择op…

el-date-picker 禁用时分秒选择(包括禁用下拉框展示)

2024.04.26今天我学习了对el-date-picker进行禁用时分秒&#xff0c; 在使用el-date-picker组件的时候&#xff0c;我们有可能遇到需要把时分秒的时间固定&#xff0c;然后并且不能让他修改&#xff1a; 1714120999296 比如右上角的这个时间&#xff0c;我们要给它固定是‘08:…

CSP初赛知识精讲--线性数据结构

第十五节 线性树形结构 基础知识 线性表 线性表是指由n个具有相同特性的数据元素组成的有限序列&#xff0c;是最基本、最简单&#xff0c;也是最常用的一种数据结构。队列、栈、链表、哈希表等数据结构逻辑上都属于线性表。一般来讲&#xff0c;表中数据之间的关系是一对一的…

WPS Word自动编号转文本

原理 使用WPS自带的宏功能&#xff0c;一键替换 过程 调出"开发工具"选项 文件->选项->自定义功能区->选中开发工具->确认 创建宏 工具 -> 运行宏 编写宏 在弹出来的框里&#xff0c;粘贴代码 如果弹窗类似如下&#xff0c;这是JS宏 则…

Spark-机器学习(5)分类学习之朴素贝叶斯算法

在之前的文章中&#xff0c;我们学习了回归中的逻辑回归&#xff0c;并带来简单案例&#xff0c;学习用法&#xff0c;并带来了简单案例。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵…

阿里云企业邮箱API的使用方法?调用限制?

阿里云企业邮箱API性能如何优化&#xff1f;配置邮箱API的优势&#xff1f; 阿里云企业邮箱以其稳定、高效和安全的特点&#xff0c;受到了众多企业的青睐。而阿里云企业邮箱API的开放&#xff0c;更是为企业提供了更加灵活、便捷的管理和操作方式。下面&#xff0c;我AokSend…

用过最佳的wordpress模板

西瓜红&#xff0c;作为一种充满活力和激情的颜色&#xff0c;总是能给人留下深刻的印象。当这种鲜艳的色彩与经典的设计元素相结合时&#xff0c;就能打造出一款既时尚又实用的WordPress企业模板。今天&#xff0c;我们向您隆重推荐这款西瓜红经典配色WordPress企业模板。 这…

User Agent 解析:它是什么以及工作原理

什么是User Agent? UserAgent&#xff0c;简称UA&#xff0c;是一个使服务器能够识别用户使用的浏览器类型、版本以及运行浏览器的操作系统等信息的字符串。它作为浏览器请求头部信息的一部分发送给服务器&#xff0c;以便服务器可以返回合适格式和版本的内容。 跟Cookie一样…