【数据结构(邓俊辉)学习笔记】向量03——常规向量

文章目录

  • 0.概述
  • 1.元素访问
  • 2.置乱器
  • 3.判等器与比较器
  • 4.无序查找
    • 4.1 判等器
    • 4.2 顺序查找
    • 4.3 实现
    • 4.4 复杂度
  • 5. 插入
    • 5.1 算法实现
    • 5.2 复杂度分析
  • 6. 删除
    • 6.1 区间删除
    • 6.2 单元删除
    • 6.3 复杂度
  • 7. 唯一化
    • 7.1 实现
    • 7.2 正确性
    • 7.3 复杂度
  • 8. 遍历
    • 8.1 实现
    • 8.2 复杂度
  • 9. 总结

0.概述

记录向量的元素访问、插入、区间删除、单元素删除、查找、唯一化、遍历算法。

1.元素访问

重载操作符"[]",使元素访问更加便捷。
在这里插入图片描述

template <typename T> T & Vector<T>::operator[] ( Rank r ) //重载下标操作符
{ return _elem[r]; } // assert: 0 <= r < _sizetemplate <typename T> const T & Vector<T>::operator[] ( Rank r ) const //仅限于做右值
{ return _elem[r]; } // assert: 0 <= r < _size

经重载后操作符“[]”返回的是对数组元素的引用,这就意味着它既可以取代get()操作(通常作为赋值表达式的右值),也可以取代set()操作(通常作为左值)。

2.置乱器

目标:借助操作符 “[]” 随机置乱向量,使各元素等概率出现于各位置。
策略:自后向前,依次将各元素与随机选取的某一前驱(含自身)做交换

template <typename T> void permute ( Vector<T>& V ) { //随机置乱向量,使各元素等概率出现于各位置for ( int i = V.size(); i > 0; i-- ) //自后向前swap ( V[i - 1], V[rand() % i] ); //V[i - 1]与V[0, i)中某一随机元素交换
}

从待置乱区间的末元素开始,逆序地向前逐一处理各元素。
在这里插入图片描述
注意,这里的交换操作swap(),隐含了三次基于重载操作符“[]”的赋值。

  • 通过反复调用 permute()算法,可以生成向量 V[0, n)的所有 n!种排列。
  • 由该算法生成的排列中,各元素处于任一位置的概率均为 1/n
  • 该算法生成各排列的概率均为 1/n!

3.判等器与比较器

算法思想:

  • 可比较或可比对的任何数据类型,而不必关心如何定义以及判定其大小或相等关系。
  • 将比对和比较操作的具体实现剥离出来,直接讨论算法流程本身。
  • 在定义对应的数据类型时,通过重载"<“和”=="之类的操作符,给出大小和相等关系的具体定义及其判别方法。
template <typename T> static bool lt ( T* a, T* b ) { return lt ( *a, *b ); } //less than
template <typename T> static bool lt ( T& a, T& b ) { return a < b; } //less than
template <typename T> static bool eq ( T* a, T* b ) { return eq ( *a, *b ); } //equal
template <typename T> static bool eq ( T& a, T& b ) { return a == b; } //equal

在一些复杂的数据结构中,内部元素本身的类型可能就是指向其它对象的指针;而从外部更多关注的,则往往是其所指对象的大小。若不加处理而直接根据指针的数值(即被指对象的物理地址)进行比较,则所得结果将毫无意义。

4.无序查找

4.1 判等器

Vector::find(e)接口,功能语义为“查找与数据对象e相等的元素”。这同时也暗示着,向量元素可通过相互比对判等,但未必支持比较的向量,称作无序向量(unsorted vector)

4.2 顺序查找

在这里插入图片描述
从末元素起自后向前,逐一取出各个元素并与目标元素e进行比对,直至发现与之相等者(查找成功),或者直至检查过所有元素之后仍未找到相等者(查找失败)。这种依次逐个比对的查找方式,称作顺序查找

4.3 实现

template <typename T> //在无序向量中顺序查找e:成功则返回最靠后的出现位置,否则返回lo-1
Rank Vector<T>::find ( T const& e, Rank lo, Rank hi ) const { //0 <= lo < hi <= _sizewhile ( ( lo < hi-- ) && ( e != _elem[hi] ) ); //从后向前,顺序查找return hi; //若hi < lo,则意味着失败;否则hi即命中元素的秩
}

细节:

  • 当同时有多个命中元素时,统一约定返回其中秩最大者
  • while循环的控制逻辑由两部分组成,首先判断是否已抵达lo,再判断当前元素与目标元素是否相等。得益于C/C++语言中逻辑表达式的短路求值特性,在前一判断非真后循环会立即终止,而不致因试图引用已越界的秩(-1)而出错。

4.4 复杂度

最坏情况 查找终止于首元素_elem[lo],运行时间为O(hi - lo) = O(n)。
最好情况 查找命中于末元素_elem[hi - 1],仅需O(1)时间。
对于规模相同、内部组成不同的输入,渐进运行时间却有本质区别,故此类算法也称作输入敏感的算法

5. 插入

5.1 算法实现

算法思想:插入之前必须首先调用expand()算法,核对是否即将溢出。

template <typename T> //将e插入至[r]
Rank Vector<T>::insert ( Rank r, T const& e ) { //0 <= r <= sizeexpand(); //如必要,先扩容for ( Rank i = _size; r < i; i-- ) //自后向前,后继元素_elem[i] = _elem[i-1]; //顺次后移一个单元_elem[r] = e; _size++; //置入新元素并更新容量return r; //返回秩
}

在这里插入图片描述
为保证数组元素物理地址连续的特性,随后需要将后缀_elem[r, _size)(如果非空)整体后移一个单元(图©)。这些后继元素自后向前的搬迁次序不能颠倒,否则会因元素被覆盖而造成数据丢失。在单元_elem[r]腾出之后,方可将待插入对象e置入其中(图(d))。

5.2 复杂度分析

时间主要消耗于后继元素的后移,线性正比于后缀的长度,故总体为O(_size - r + 1)。
r取最大值_size时为最好情况,只需O(1)时间;r取最小值0时为最坏情况,需要O(_size)时间。

若插入位置等概率分布,则平均运行时间为O(_size) = O(n)

运行时间主要来自于后继元素顺次后移的操作。因此对于每个插入位置而言,对应的移动操作次数恰好等于其后继元素(包含自身)的数目。不难看出它们也构成一个等差数列(数学期望O( n 2 n^2 n2) m为后继元素数目),故在等概率的假设条件下,其均值(数学期望)应渐进地与其中的最高项同阶,为O(n)。

6. 删除

应将单元素删除视作区间删除的特例,并基于后者来实现前者

6.1 区间删除

template <typename T> Rank Vector<T>::remove( Rank lo, Rank hi ) { //0 <= lo <= hi <= nif ( lo == hi ) return 0; //出于效率考虑,单独处理退化情况while ( hi < _size ) _elem[lo++] = _elem[hi++]; //后缀[hi, _size)顺次前移hi-lo位_size = lo; shrink(); //更新规模,lo=_size之后的内容无需清零;如必要,则缩容//若有必要,则缩容return hi - lo; //返回被删除元素的数目
}

在这里插入图片描述
设[lo, hi)为向量(图(a))的合法区间(图(b)),则其后缀[hi, n)需整体前移hi - lo个单元(图©)。与插入算法同理,后继元素自前向后的移动次序也不能颠倒。

  • 若以自后向前得次序逐个前移后继元素,位置靠前的元素,可能被位置靠后(优先移动)的元素覆盖,从而造成数据的丢失。
    在这里插入图片描述
    V.remove(0, 2)以删除其中的前两个元素,可见,原数据元素V[2] = 2并未顺利转移至输出向量中的V[0],即出现数据的丢失现象。

6.2 单元删除

重载即可实现如下另一同名接口remove®。

template <typename T> T Vector<T>::remove( Rank r ) { //删除向量中秩为r的元素,0 <= r < sizeT e = _elem[r]; //备份被删除元素remove( r, r + 1 ); //调用区间删除算法,等效于对区间[r, r + 1)的删除return e; //返回被删除元素
}

6.3 复杂度

remove(lo, hi)的计算成本,主要消耗于后续元素的前移,线性正比于后缀的长度,总体不过O(m + 1) = O(_size - hi + 1)。
结论

区间删除操作所需的时间,应该仅取决于后继元素的数目,而与被删除区间本身的宽度无关。

被删除元素在向量中的位置越靠后(前)所需时间越短(长),最好为O(1),最坏为O(n) = O(_size)。

7. 唯一化

所谓向量的唯一化处理,就是剔除其中的重复元素。

7.1 实现

template <typename T> Rank Vector<T>::dedup() { //删除无序向量中重复元素(高效版)Rank oldSize = _size; //记录原规模for ( Rank i = 1; i < _size; ) //自前向后逐个考查_elem[1,_size)if ( -1 == find(_elem[i], 0, i) ) //在前缀[0,i)中寻找与[i]雷同者(至多一个),O(i)i++; //若无雷同,则继续考查其后继elseremove(i); //否则删除[i],O(_size-i)return oldSize - _size; //被删除元素总数
}

该算法自前向后逐一考查各元素_elem[i],并通过调用find()接口,在其前缀中寻找与之雷同者。若找到,则随即删除;否则,转而考查当前元素的后继。

7.2 正确性

在while循环中,在当前元素的前缀_elem[0, i)内,所有元素彼此互异
在这里插入图片描述

7.3 复杂度

随着循环的不断进行,当前元素的后继持续地严格减少

这里所需的时间,主要消耗于find()和remove()两个接口。

find()时间应线性正比于查找区间的宽度,即前驱的总数;
remove()时间应线性正比于后继的总数。因此,每步迭代所需时间为O(n),总体复杂度应为O( n 2 n^2 n2)。

8. 遍历

8.1 实现

算法思想:

  1. 借助函数指针*visit()指定某一函数,该函数只有一个参数,其类型为对向量元素的引用,故通过该函数即可直接访问或修改向量元素。
  2. 也可以函数对象的形式,指定具体的遍历操作。这类对象的操作符“()”经重载之后,在形式上等效于一个函数接口,故此得名。
    在这里插入图片描述
template <typename T> void Vector<T>::traverse( void ( *visit )( T& ) ) //借助函数指针机制
{ for ( Rank i = 0; i < _size; i++ ) visit( _elem[i] ); } //遍历向量template <typename T> template <typename VST> //元素类型、操作器
void Vector<T>::traverse( VST& visit ) //借助函数对象机制
{ for ( Rank i = 0; i < _size; i++ ) visit( _elem[i] ); } //遍历向量

相比较而言,后一形式的功能更强,适用范围更广。

比如,函数对象的形式支持对向量元素的关联修改。也就是说,对各元素的修改不仅可以相互独立地进行,也可以根据某个(些)元素的数值相应地修改另一元素。前一形式虽也可实现这类功能,但要繁琐很多。

例如:统一递增向量中的各元素

template <typename T> void increase ( Vector<T> & V ) //统一递增向量中的各元素
{  V.traverse ( Increase<T>() );  } //以Increase<T>()为基本操作进行遍历

8.2 复杂度

遍历操作本身只包含一层线性的循环迭代,故除了向量规模的因素之外,遍历所需时间应线性正比于所统一指定的基本操作所需的时间。故这一遍历的总体时间复杂度为O(n)。

9. 总结

  1. 置乱算法 permute() 从待置乱区间的末元素开始,逆序地向前逐一处理各元素。时间复杂度为O(n)
  2. 顺序查找算法 find() 从末元素起自后向前,逐一取出各个元素并与目标元素进行比对,时间复杂度应线性正比于查找区间的宽度,即前驱的总数。
  3. 插入算法insert() ,时间复杂度线性正比于后缀的长度为
  4. 删除算法remove() ,时间复杂度应该仅取决于后继元素的数目
  5. 唯一化算法deduplicate(),主要消耗于find()和remove()两个接口,时间复杂度O( n 2 n^2 n2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/827743.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pycharm代码规范与代码格式化插件安装

给大家分享两个PyCharm编辑器的插件&#xff0c;分别是pylint与autopep8&#xff0c;主要用来提高我们在使用python进行自动化测试编写以及性能测试脚本编写过程中的代码质量、可读性与美观性。 pylint&#xff1a; ● 代码检查工具&#xff1a;它可以帮助检查代码中的错误、…

Java常见面试题总结

文章目录 1. 什么是线程和进程?2. 请简要描述线程与进程的关系,区别及优缺点&#xff1f;3. 什么是堆和方法区&#xff1f;4. 并发与并行的区别5. 同步和异步的区别6.为什么要使用多线程? 优点&#xff1f;&#xff08;重要&#xff09;7. 使用多线程可能带来什么问题?8. 如…

视频滚动字幕一键批量轻松添加,解锁高效字幕编辑,提升视频质量与观众体验

视频已成为我们获取信息、娱乐休闲的重要渠道。一部成功的视频作品&#xff0c;除了画面精美、音质清晰外&#xff0c;字幕的添加也是至关重要的一环。字幕不仅能增强视频的观感&#xff0c;还能提升信息的传达效率&#xff0c;让观众在享受视觉盛宴的同时&#xff0c;更加深入…

vue项目使用百度地图

打开百度地图开放平台 百度地图开放平台 | 百度地图API SDK | 地图开发 在控制台新建应用 复制访问应用的ak 可修改地图样式 使用部分 <!-- 引入地图 --><div class"main-aside"><div id"b-map-container"></div></div> …

面试ssss

响应式布局 响应式布局是一种设计和开发网页的方法&#xff0c;使网页能够适应不同的设备和屏幕尺寸&#xff0c;提供更好的用户体验。它通过使用媒体查询&#xff08;Media Queries&#xff09;和弹性布局&#xff08;Flexbox&#xff09;等技术&#xff0c;根据设备的特性和…

一个docker配置mysql主从服务器

这也就是因为穷&#xff0c;不然谁用一个docker配置主从&#xff0c;哈哈 既然成功了就记录下。过程挺折磨人的。 首先要保证你的电脑安装好了docker 为了保证docker当中主从能正常连网&#xff0c;现在docker里面创建一个网络环境 docker network create --driver bridge mysq…

面试八股——RabbitMQ

消息丢失问题 消息确认机制 生产者与MQ之间的消息确认&#xff1a; 当MQ成功接收消息后&#xff0c;会返回给生产者一个确认消息。如果在规定时间内生产者未收到确认消息&#xff0c;则任务消息发送失败。 MQ与消费者之间的消息确认&#xff1a; 当MQ成功接收消息后&#…

DeepFaceLab小白教程:视频换脸过程

合适那些人阅读&#xff1f; 适合从未使用过DeepFaceLab的群体。 如果你想基于DeepFaceLab完成一次视频换脸的操作&#xff0c;可以看本篇。 下载方式 GitHub https://github.com/iperov/DeepFaceLab 我是用motrix下载。 网盘 https://pan.baidu.com/share/init?surlO4…

鸿蒙(HarmonyOS)性能优化实战-Swiper高性能开发

背景 在应用开发中&#xff0c;Swiper 组件常用于翻页场景&#xff0c;比如&#xff1a;桌面、图库等应用。Swiper 组件滑动切换页面时&#xff0c;基于按需加载原则通常会在下一个页面将要显示时才对该页面进行加载和布局绘制&#xff0c;这个过程包括&#xff1a; 如果该页面…

nest使用swagger文档

OpenAPI(Swagger)规范是一种用于描述 RESTful API 的强大定义格式。 Nest 提供了一个专用模块来使用它。 安装 npm安装 npm install --save nestjs/swagger swagger-ui-expressyarn 安装 yarn add nestjs/swagger swagger-ui-express引入 使用 SwaggerModule 类初始化 Swa…

【Hadoop】-Hive初体验[13]

Hive体验 预先确保已经完成部署Hive&#xff0c;并启动了Metastore服务 可以执行&#xff1a;bin/hive&#xff0c;进入到Hive Shell环境中&#xff0c;可以直接执行SQL语句。 创建表 create table test(id int,name string,gender string); 插入数据 INSERT INTO test val…

Golang基础2-Array、Slice、Map

Array 数组 var a [5]int b:[5]int{} c:[...]int{}这样格式定义var a[5]int 和var a[10]int是不同类型从0开始下标&#xff0c;到len(a)-1遍历方式&#xff1a; for i : 0; i < len(a); i { }for index, v : range a { } 注意越界问题&#xff0c;panic值类型&#xff0c;…

密码学 | Schnorr 协议:零知识身份证明和数字签名

&#x1f955;原文&#xff1a; Schnorr 协议&#xff1a;零知识身份证明和数字签名 &#x1f955;写在前面&#xff1a; 本文属搬运博客&#xff0c;自己留存学习。文中的小写字母表示标量&#xff0c;大写字母表示椭圆曲线中的点。 1 Schnorr 简介 Schnorr 由德国数学家和密…

windows系统下python开发工具安装

一. 简介 前一篇文章学习了安装 python解释器&#xff0c;文章如下&#xff1a; windows系统下python解释器安装-CSDN博客 本文来学习如何下载安装 python开发工具 PyCharm。 二. python开发工具 PyCharm下载安装 1. PyCharm官网 PyCharm开发工具 PyCharm为 python代码…

Llama网络结构介绍

LLaMA现在已经是开源社区里炙手可热的模型了&#xff0c;但是原文中仅仅介绍了其和标准Transformer的差别&#xff0c;并没有一个全局的模型介绍。因此打算写篇文章&#xff0c;争取让读者不参考任何其他资料把LLaMA的模型搞懂。 结构 如图所示为LLaMA的示意图&#xff0c;由…

域名被污染了只能换域名吗?

域名污染是指域名的解析结果受到恶意干扰或篡改&#xff0c;使得用户在访问相关网站时出现异常。很多域名遭遇过污染的情况&#xff0c;但是并不知道是域名污染&#xff0c;具体来说&#xff0c;域名污染可能表现为以下情况&#xff1a;用户无法通过输入正确的域名访问到目标网…

Windos环境下配置免费SSL证书详细步骤

获取免费证书 配置本机模拟域名 打开如下目录&#xff0c;hosts文件 C:\Windows\System32\drivers\etc 添加如下配置并保存 127.0.0.1 im.test.com下载安装 OpenSSL 下载链接 进入bin目录&#xff0c; 打开cmd窗口 执行如下命令&#xff0c;生成RSA私钥 ## 使用des3…

大型集团企业 怎么实现多区域文件交换?

很多大型集团企业&#xff0c;都会在全国各地&#xff0c;甚至海外&#xff0c;都设立分支机构&#xff0c;还有银行、邮政这类机构&#xff0c;都会在全国各地设立多个支行和网点&#xff0c;所以在日常经营过程中&#xff0c;都会存在多区域文件交换的场景。 大型集团企业在进…

JVM垃圾收集器--分区收集器

G1收集器 G1&#xff08;Garbage-First Garbage Collector&#xff09;在 JDK 1.7 时引入&#xff0c;在 JDK 9 时取代 CMS 成为了默认的垃圾收集器。G1 有五个属性&#xff1a;分代、增量、并行、标记整理、STW。 分代 G1收集器 将内部分为多个大小相等的区域&#xff0c;另…

Unity Shader 图形学【笔记一】

游戏图形学 源自&#xff1a;计算机图形学 涵盖&#xff1a;图形、动画的创建渲染展示 目标&#xff1a;性能优化、提高视觉质量&#xff0c;增强用户体验 技术&#xff1a;三维模型、纹理、光照、阴影、特效、动画、物理模拟、碰撞检测等 Unity Shader 是&#xff1a;un…