数值分析复习:Richardson外推和Romberg算法

文章目录

    • Richardson外推
    • Romberg(龙贝格)算法

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

本节继续考虑数值积分问题

Richardson外推

命题:复合梯形公式的另一形式
f ∈ C ∞ [ a , b ] f\in C^{\infty}[a,b] fC[a,b],记 I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx ,将复合梯形公式记为
T ( h ) = h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] T(h)=\frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] T(h)=2hi=0n1[f(xi)+f(xi+1)]

T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

其中 α l ( l = 1 , 2 , … ) \alpha_l(l=1,2,\dots) αl(l=1,2,) h h h 无关

证明
x i + 1 2 = x i + x i + 1 2 , i = 0 , 1 , … , n − 1 x_{i+\frac{1}{2}}=\frac{x_i+x_{i+1}}{2},i=0,1,\dots,n-1 xi+21=2xi+xi+1,i=0,1,,n1

考虑 f ( x ) f(x) f(x) x = x i + 1 2 x=x_{i+\frac{1}{2}} x=xi+21 处的Taylor展开公式
f ( x ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) ( x − x i + 1 2 ) + f ′ ′ ( x i + 1 2 ) 2 ! ( x − x i + 1 2 ) 2 + ⋯ f(x)=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})(x-x_{i+\frac{1}{2}})+\frac{f''(x_{i+\frac{1}{2}})}{2!}(x-x_{i+\frac{1}{2}})^2+\cdots f(x)=f(xi+21)+f(xi+21)(xxi+21)+2!f′′(xi+21)(xxi+21)2+

若对上述 Taylor 公式代入 x = x i , x = x i + 1 x=x_{i},x=x_{i+1} x=xi,x=xi+1,则得
f ( x i + 1 ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) h 2 + f ′ ′ ( x i + 1 2 ) 2 ! ( h 2 ) 2 + ⋯ f(x_{i+1})=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})\frac{h}{2}+\frac{f''(x_{i+\frac{1}{2}})}{2!}(\frac{h}{2})^2+\cdots f(xi+1)=f(xi+21)+f(xi+21)2h+2!f′′(xi+21)(2h)2+ f ( x i ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) ( − h 2 ) + f ′ ′ ( x i + 1 2 ) 2 ! ( − h 2 ) 2 + ⋯ f(x_i)=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})(-\frac{h}{2})+\frac{f''(x_{i+\frac{1}{2}})}{2!}(-\frac{h}{2})^2+\cdots f(xi)=f(xi+21)+f(xi+21)(2h)+2!f′′(xi+21)(2h)2+

两式加和,得到
f ( x i ) + f ( x i + 1 ) 2 = f ( x i + 1 2 ) + h 2 8 f ′ ′ ( x i + 1 2 ) + ⋯ \frac{f(x_i)+f(x_{i+1})}{2}=f(x_{i+\frac{1}{2}})+\frac{h^2}{8}f''(x_{i+\frac{1}{2}})+\cdots 2f(xi)+f(xi+1)=f(xi+21)+8h2f′′(xi+21)+

等式两端求和,乘以 h h h 得到
T ( h ) = h ∑ i = 0 n − 1 f ( x i + 1 2 ) + h 3 8 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (1) T(h)=h\sum\limits_{i=0}^{n-1}f(x_{i+\frac{1}{2}})+\frac{h^3}{8}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\cdots\tag 1 T(h)=hi=0n1f(xi+21)+8h3i=0n1f′′(xi+21)+(1)

另一方面,对Taylor公式从 x i x_i xi x i + 1 x_{i+1} xi+1 进行积分,得到
∫ x i x i + 1 f ( x ) d x = h ⋅ f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) 2 [ ( h 2 ) 2 − ( − h 2 ) 2 ] + f ′ ′ ( x i + 1 2 ) 6 [ ( h 2 ) 3 − ( − h 2 ) 3 ] + ⋯ \int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x=h\cdot f(x_{i+\frac{1}{2}})+\frac{f'(x_{i+\frac{1}{2}})}{2}[(\frac{h}{2})^2-(-\frac{h}{2})^2]+\frac{f''(x_{i+\frac{1}{2}})}{6}[(\frac{h}{2})^3-(-\frac{h}{2})^3]+\cdots xixi+1f(x)dx=hf(xi+21)+2f(xi+21)[(2h)2(2h)2]+6f′′(xi+21)[(2h)3(2h)3]+

等式两端求和得

I = ∑ i = 0 n − 1 ∫ x i x i + 1 f ( x ) d x = h ∑ i = 0 n − 1 f ( x i + 1 2 ) + h 3 24 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (2) I=\sum\limits_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x=h\sum\limits_{i=0}^{n-1}f(x_{i+\frac{1}{2}}) +\frac{h^3}{24}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}}) +\cdots\tag 2 I=i=0n1xixi+1f(x)dx=hi=0n1f(xi+21)+24h3i=0n1f′′(xi+21)+(2)

结合(1)(2)式,可得
T ( h ) = I + h 3 12 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (3) T(h)=I+\frac{h^3}{12}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\cdots\tag 3 T(h)=I+12h3i=0n1f′′(xi+21)+(3)

类似(2)式的推导,可得
∫ a b f ′ ′ ( x ) d x = h ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + h 3 24 ∑ i = 0 n − 1 f ( 4 ) ( x i + 1 2 ) + ⋯ \int_a^bf''(x)\mathrm{d}x=h\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\frac{h^3}{24}\sum\limits_{i=0}^{n-1}f^{(4)}(x_{i+\frac{1}{2}})+\cdots abf′′(x)dx=hi=0n1f′′(xi+21)+24h3i=0n1f(4)(xi+21)+

结合 ∫ a b f ′ ′ ( x ) d x = f ′ ( b ) − f ′ ( a ) \int_a^bf''(x)\mathrm{d}x=f'(b)-f'(a) abf′′(x)dx=f(b)f(a),可将(3)式化为
T ( h ) = I + α 1 h 2 + h 5 c 4 ∑ i = 0 n − 1 f ( 4 ) ( x i + 1 2 ) + ⋯ T(h)=I+\alpha_1h^2+h^5c_4\sum\limits_{i=0}^{n-1}f^{(4)}(x_{i+\frac{1}{2}})+\cdots T(h)=I+α1h2+h5c4i=0n1f(4)(xi+21)+

重复上述操作,考虑 ∫ a b f ( 4 ) ( x ) d x \int_a^bf^{(4)}(x)\mathrm{d}x abf(4)(x)dx,消去 h 5 h^5 h5 的项,得到 h 4 h^4 h4 的项,继续重复操作,可得
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

定义:Richardson外推
从低阶精度格式的截断误差的渐近展开式出发,做简单线性计算从而得到高阶精度格式的方法称为Richardson外推

例:
考虑复合梯形公式 T ( h ) T(h) T(h) 满足的式子
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

此时截断误差量级为 O ( h 2 ) O(h^{2}) O(h2)

取步长为 h 2 \frac{h}{2} 2h,则有
T ( h 2 ) = I + α 1 h 2 4 + α 2 h 4 16 + ⋯ + α l h 2 l 2 2 l + ⋯ T(\frac{h}{2})=I+\alpha_1\frac{h^2}{4}+\alpha_2\frac{h^4}{16}+\cdots+\alpha_l\frac{h^{2l}}{2^{2l}}+\cdots T(2h)=I+α14h2+α216h4++αl22lh2l+

结合这两个式子,消去 h 2 h^{2} h2项,得
4 T ( h 2 ) − T ( h ) 3 = I − 1 4 α 2 h 4 + ⋯ + α l 3 ( 1 2 2 l − 1 ) h 2 l + ⋯ \frac{4T(\frac{h}{2})-T(h)}{3}=I-\frac{1}{4}\alpha_2h^4+\cdots+\frac{\alpha_l}{3}(\frac{1}{2^{2l}}-1)h^{2l}+\cdots 34T(2h)T(h)=I41α2h4++3αl(22l11)h2l+
T 1 ( h ) = 4 T ( h 2 ) − T ( h ) 3 T_1(h)=\frac{4T(\frac{h}{2})-T(h)}{3} T1(h)=34T(2h)T(h),且
T 1 ( h ) = I + β 2 h 4 + β 3 h 6 + ⋯ + β l h 2 l + ⋯ T_1(h)=I+\beta_2h^4+\beta_3h^6+\cdots+\beta^lh^{2l}+\cdots T1(h)=I+β2h4+β3h6++βlh2l+
若用 T 1 ( h ) T_1(h) T1(h) 估计 I I I ,则截断误差量级提高到 O ( h 4 ) O(h^{4}) O(h4)
类似地,可继续做……

注:只要截断误差可表示为 h h h 的幂级数,均可使用 Richardson外推提高精度

Romberg(龙贝格)算法

在上述对复合梯形公式的截断误差进行Richardson外推的过程中,记复合梯形公式 T 0 ( h ) = T ( h ) = h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] T_0(h)=T(h)=\frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] T0(h)=T(h)=2hi=0n1[f(xi)+f(xi+1)]

加速一次(即进行一次Richardson外推)后的估计式记为
T 1 ( h ) = 4 T ( h 2 ) − T ( h ) 3 T_1(h)=\frac{4T(\frac{h}{2})-T(h)}{3} T1(h)=34T(2h)T(h)

记加速 n n n 次的估计式为 T n ( h ) T_n(h) Tn(h),则有递推式
T n ( h ) = 4 n 4 n − 1 T n − 1 ( h 2 ) − 1 4 n − 1 T n − 1 ( h ) T_n(h)=\frac{4^n}{4^n-1}T_{n-1}(\frac{h}{2})-\frac{1}{4^n-1}T_{n-1}(h) Tn(h)=4n14nTn1(2h)4n11Tn1(h)

若记 T m ( k ) = T m ( h 2 k ) , k = 0 , 1 , 2 , … T_m^{(k)}=T_m(\frac{h}{2^k}),k=0,1,2,\dots Tm(k)=Tm(2kh),k=0,1,2,,则有递推式
T n ( k ) = 4 n 4 n − 1 T n − 1 ( k + 1 ) − 1 4 n − 1 T n − 1 ( k ) T_n^{(k)}=\frac{4^n}{4^n-1}T_{n-1}^{(k+1)}-\frac{1}{4^n-1}T_{n-1}^{(k)} Tn(k)=4n14nTn1(k+1)4n11Tn1(k)

定理:
设被积函数 f ( x ) f(x) f(x) 充分光滑

  1. lim ⁡ k → ∞ T m ( k ) = I \lim\limits_{k\to\infty}T_m^{(k)}=I klimTm(k)=I
  2. lim ⁡ m → ∞ T m ( k ) = I \lim\limits_{m\to\infty}T_m^{(k)}=I mlimTm(k)=I

注:证明略去,第一个结论说明当节点数目无穷多时, T m ( k ) T_m^{(k)} Tm(k) 收敛于准确的积分值;第二个结论说明随着Richardson外推的进行, T m ( k ) T_m^{(k)} Tm(k) 也收敛于准确的积分值

上述递推式和收敛定理给出了如下的Romberg算法

定义:Romberg算法
对预先给定的精度 ε \varepsilon ε,求 I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx 的近似值,算法如下:

初始取 k = 0 , m = 0 , h = b − a k=0,m=0,h=b-a k=0,m=0,h=ba

  1. 代入梯形公式,求 T 0 ( k ) ( k = 0 , 1 , 2 , … ) T_0^{(k)}(k=0,1,2,\dots) T0(k)(k=0,1,2,)
  2. 加速一次,由递推公式求 T 1 ( k ) T_1^{(k)} T1(k)
  3. 直至 ∣ T k ( 0 ) − T k − 1 ( 0 ) ∣ < ε |T_k^{(0)}-T_{k-1}^{(0)}|<\varepsilon Tk(0)Tk1(0)<ε,则取 T k ( 0 ) ≈ I T_{k}^{(0)}\approx I Tk(0)I

注:具体求解顺序如下表

在这里插入图片描述

参考书籍:《数值分析》李庆扬 王能超 易大义 编

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/827154.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决在linux中执行tailscale up却不弹出验证网址【Tailscale】【Linux】

文章目录 问题解决提醒 问题 最近有远程办公需求&#xff0c;需要连接内网服务器&#xff0c;又不太想用todesk&#xff0c;于是找到一个安全免费可用的Tailscale Best VPN Service for Secure Networks&#xff0c;在windows中顺利注册账号后&#xff0c;登陆了我的windows …

上位机图像处理和嵌入式模块部署(树莓派4b进行驱动的编写)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 树莓派4b上面还支持驱动代码的编写&#xff0c;这是我没有想到的。这里驱动&#xff0c;更多的是一种框架的编写&#xff0c;不一定是编写真正的驱…

20240422,C++文件操作

停电一天之后&#xff0c;今天还有什么理由不学习呜呜……还是没怎么学习 一&#xff0c;文件操作 文件操作可以将数据持久化&#xff0c;对文件操作时须包含头文件<fstream> 两种文件类型&#xff1a;文本文件&#xff1a;文件以文本的ASCII码形式存储&#xff1b;二进…

【Vue3】$subscribe订阅与反应

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

超越OpenAI,谷歌重磅发布从大模型蒸馏的编码器Gecko

引言&#xff1a;介绍文本嵌入模型的重要性和挑战 文本嵌入模型在自然语言处理&#xff08;NLP&#xff09;领域扮演着至关重要的角色。它们将文本转换为密集的向量表示&#xff0c;使得语义相似的文本在嵌入空间中彼此靠近。这些嵌入被广泛应用于各种下游任务&#xff0c;包括…

VideoComposer: Compositional Video Synthesis with Motion Controllability

decompose videos into three distinct types of conditions: textual conditions, spatial conditions, temperal conditions 条件的内容&#xff1a; a. textual condition: coarse grained visual content and motions, 使用openclip vit-H/14的text encoder b. spatial co…

Splashtop 将在 NAB 展会上推出音视频剪辑增强功能

加利福尼亚州拉斯维加斯 Splashtop 在简化随处办公远程解决方案领域处于领先地位&#xff0c;在今年举行的 NAB 展会上将推出 Enterprise 解决方案的高级性能功能&#xff0c;均面向广播和媒体工作者而设计。 Splashtop Enterprise 经过优化&#xff0c;可为执行视频剪辑、唇…

Excel文件解析--超大Excel文件读写

使用POI写入 当我们想在Excel文件中写入100w条数据时&#xff0c;我们用普通的XSSFWorkbook对象写入时会发现&#xff0c;只有在将100w条数据全部加载入内存后才会用write()方法统一写入&#xff0c;这样效率很低&#xff0c;所以我们引入了SXSSFWorkbook进行超大Excel文件的读…

java开发之路——node.js安装

1. 安装node.js 最新Node.js安装详细教程及node.js配置 (1)默认的全局的安装路径和缓存路径 npm安装模块或库(可以统称为包)常用的两种命令形式&#xff1a; 本地安装(local)&#xff1a;npm install 名称全局安装(global)&#xff1a;npm install 名称 -g本地安装和全局安装…

【Leetcode】string类刷题

&#x1f525;个人主页&#xff1a;Quitecoder &#x1f525;专栏&#xff1a;Leetcode刷题 目录 1.仅反转字母2.字符串中第一个唯一字符3.验证回文串4.字符串相加5.反转字符串I I6.反转字符串中的单词III7.字符串相乘8.把字符串转换为整数 1.仅反转字母 题目链接&#xff1a;…

一篇文章带您了解面向对象(java)

1.简单理解面向过程编程和面向对象编程 面向过程编程&#xff1a;开发一个一个的方法&#xff0c;有数据需要处理&#xff0c;我们就可以调用方法来处理。 package com.web.quictstart;public class demo1 {public static void main(String[] args) {totalScore("张三&q…

mac上VMware fusion net模式无法正常使用的问题

更新时间&#xff1a;2024年04月22日21:39:04 1. 问题 环境&#xff1a; intel芯片的macbook pro VMware fusion 13.5.1 无法将“Ethernet0”连接到虚拟网络“/dev/vmnet8”。在这里显示这个之后&#xff0c;应该是vmnet8的网段发生了冲突&#xff0c;所以导致无法正常使用…

前端开发攻略---拖动归类,将元素拖拽到相应位置

1、演示 2、代码 <!DOCTYPE html><html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" content"widthdevice-…

2024年Q1季度平板电视行业线上市场销售数据分析

Q1季度平板电视线上市场表现不如预期。 根据鲸参谋数据显示&#xff0c;2024年1月至3月线上电商平台&#xff08;京东天猫淘宝&#xff09;平板电视累计销量约360万件&#xff0c;环比下降12%&#xff0c;同比下降30%&#xff1b;累计销售额约99亿元&#xff0c;环比下降28%&a…

学习STM32第十七天

备份域详解 一、简介 在参考手册的电源控制章节&#xff0c;提到了备份域&#xff0c;BKPR是在RTC外设中用到&#xff0c;包含20个备份数据寄存器&#xff08;80字节&#xff09;&#xff0c;备份域包括4KB的备份SRAM&#xff0c;以32位、16位或8位模式寻址&#xff0c;在VBAT…

C++初阶学习第二弹——C++入门(下)

C入门&#xff08;上&#xff09;&#xff1a;C初阶学习第一弹——C入门&#xff08;上&#xff09;-CSDN博客 目录 一、引用 1.1 引用的实质 1.2 引用的用法 二、函数重载 三、内敛函数 四、auto关键字 五、总结 前言&#xff1a; 在上面一章我们已经讲解了C的一些基本…

Vue2进阶之Vue2高级用法

Vue2高级用法 mixin示例一示例二 plugin插件自定义指令vue-element-admin slot插槽filter过滤器 mixin 示例一 App.vue <template><div id"app"></div> </template><script> const mixin2{created(){console.log("mixin creat…

【Java网络编程】TCP通信(Socket 与 ServerSocket)和UDP通信的三种数据传输方式

目录 1、TCP通信 1.1、Socket 和 ServerSocket 1.3、TCP通信示例 2、UDP的三种通信&#xff08;数据传输&#xff09;方式 1、TCP通信 TCP通信协议是一种可靠的网络协议&#xff0c;它在通信的两端各建立一个Socket对象 通信之前要保证连接已经建立&#xff08;注意TCP是一…

【Interconnection Networks 互连网络】Torus 网络拓扑

1. Torus 网络拓扑2. Torus 网络拓扑结构References 1. Torus 网络拓扑 Torus 和 Mesh 网络拓扑&#xff0c;又可以称为 k-ary n-cubes&#xff0c;在规则的 n 维网格中包裹着 N k^n 个节点&#xff0c;每个维度都有 k 个节点&#xff0c;并且最近邻居之间有通道。k-ary n-c…

YOLOv9有效改进专栏汇总|未来更新卷积、主干、检测头注意力机制、特征融合方式等创新![2024/4/21]

​ 专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;助力高效涨点&#xff01;&#xff01;&#xff01; 专栏介绍 YOLOv9作为最新的YOLO系列模型&#xff0c;对于做目标检测的同学是必不可少的。本专栏将针对2024年最新推出的YOLOv9检测模型&#xff0…