OpenCV基本图像处理操作(十一)——图像特征Sift算法

图像尺度空间

在一定的范围内,无论物体是大还是小,人眼都可以分辨出来,然而计算机要有相同的能力却很难,所以要让机器能够对物体在不同尺度下有一个统一的认知,就需要考虑图像在不同的尺度下都存在的特点。
尺度空间的获取通常使用高斯模糊来实现
在这里插入图片描述在这里插入图片描述不同σ的高斯函数决定了对图像的平滑程度,越大的σ值对应的图像越模糊。

多分辨率金字塔

在这里插入图片描述

高斯差分金字塔(DOG)

在这里插入图片描述

定义公式

D ( x , y , σ ) = [ G ( x , y , k σ ) − G ( x , y , σ ) ] ∗ I ( x , y ) = L ( x , y , k σ ) − L ( x , y , σ ) D(x, y, \sigma)=[G(x, y, k \sigma)-G(x, y, \sigma)] * I(x, y)=L(x, y, k \sigma)-L(x, y, \sigma) D(x,y,σ)=[G(x,y,)G(x,y,σ)]I(x,y)=L(x,y,)L(x,y,σ)

DoG空间极值检测

为了寻找尺度空间的极值点,每个像素点要和其图像域(同一尺度空间)和尺度域(相邻的尺度空间)的所有相邻点进行比较,当其大于(或者小于)所有相邻点时,该点就是极值点。如下图所示,中间的检测点要和其所在图像的3×3邻域8个像素点,以及其相邻的上下两层的3×3领域18个像素点,共26个像素点进行比较。
在这里插入图片描述

关键点的精确定位

这些候选关键点是DOG空间的局部极值点,而且这些极值点均为离散的点,精确定位极值点的一种方法是,对尺度空间DoG函数进行曲线拟合,计算其极值点,从而实现关键点的精确定位。
在这里插入图片描述
消除边界响应后为:
在这里插入图片描述

特征点的方向

在这里插入图片描述
每个特征点可以得到三个信息(x,y,σ,θ),即位置、尺度和方向。具有多个方向的关键点可以被复制成多份,然后将方向值分别赋给复制后的特征点,一个特征点就产生了多个坐标、尺度相等,但是方向不同的特征点。

生成特征描述

在完成关键点的梯度计算后,使用直方图统计邻域内像素的梯度和方向。
在这里插入图片描述
为了保证特征矢量的旋转不变性,要以特征点为中心,在附近邻域内将坐标轴旋转θ角度,即将坐标轴旋转为特征点的主方向。
在这里插入图片描述
旋转之后的主方向为中心取8x8的窗口,求每个像素的梯度幅值和方向,箭头方向代表梯度方向,长度代表梯度幅值,然后利用高斯窗口对其进行加权运算,最后在每个4x4的小块上绘制8个方向的梯度直方图,计算每个梯度方向的累加值,即可形成一个种子点,即每个特征的由4个种子点组成,每个种子点有8个方向的向量信息。
在这里插入图片描述
论文中建议对每个关键点使用4x4共16个种子点来描述,这样一个关键点就会产生128维的SIFT特征向量。
在这里插入图片描述

代码实现

import cv2
import numpy as npimg = cv2.imread('test_1.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
kp = sift.detect(gray, None)
img = cv2.drawKeypoints(gray, kp, img)cv2.imshow('drawKeypoints', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
kp, des = sift.compute(gray, kp)
print (np.array(kp).shape)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/826614.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《6G数据面架构研究》

目录 一、数据服务的定义二、6G数据服务驱动力及面临的挑战6G数据服务的业务驱动6G数据服务的技术驱动6G数据服务的网络内在驱动6G数据面面临的挑战 三、6G数据服务典型场景自动化网络运维用户体验提升通信感知数据服务 四、6G数据面架构研究数据面架构视图功能定义说明&#x…

kafka部分partition的leader=-1修复方案整理

kafka部分partition的leader-1修复方案整理 1. 背景说明2. 修复测试2.1 创建正常的topic并验证生产和消费2.2 停止kafka模拟leader-12.3 修复parition2.4 修复完成验证生产消费是否恢复 3. 疑问和思考3.1 kafka在进行数据消费时,如果有partition的leader-1&#xff…

从迷宫问题理解dfs

文章目录 迷宫问题打印路径1思路定义一个结构体要保存所走的路径,就需要使用到栈遍历所有的可能性核心代码 部分函数递归图源代码 迷宫问题返回最短路径这里的思想同上面类似。源代码 迷宫问题打印路径1 定义一个二维数组 N*M ,如 5 5 数组下所示&…

十一、Yocto集成tcpdump等网络工具

文章目录 Yocto集成tcpdump等网络工具networking layer集成 Yocto集成tcpdump等网络工具 本篇文章为基于raspberrypi 4B单板的yocto实战系列的第十一篇文章: 一、yocto 编译raspberrypi 4B并启动 二、yocto 集成ros2(基于raspberrypi 4B) 三、Yocto创建自定义的lay…

ctf.show_web14

在switch中,case 里如果没有 break,则会继续向下执行 case。 过滤了information_schema.tables、information_schema.column、空格 information_schema.tables 或 .columns 用反引号 information_schema.tables 同时查3个字段 ?query-1/**/union/**/…

ssh免秘钥登录与时钟同步

ssh免秘钥登录及数据拷贝 ssh免秘钥登录及数据拷贝环境生成秘钥拷贝公钥到到远程服务器通过ssh-copy-id命令拷贝公钥到远程服务器通过手动拷贝公钥到远程服务器 非root用户远程拷贝公钥 设置编码方式临时设置编码永久设置方法一永久设置方法二 设置时钟同步使用 ntpdate 命令使…

血糖长期不降,乏力、视力模糊?可能治疗方向有误。

糖尿病能不能治愈,中医能不能治,这是很多人讨论的话题,现在全世界任何一家西医医院都会告诉你,糖尿病没办法治,给你的建议也是终身服药,或者打胰岛素治疗,但是我告诉你,其实这都是治…

Jmeter04:关联

1 Jmeter组件:关联 概括:2个请求之间不是独立的,一个请求响应的结果是作为另一个请求提交的数据,存在数据交互 1.1 是什么? 就是一个请求的结果是另一个请求提交的数据,二者不再是独立 1.2 为什么&#x…

深入理解Java IO流:字符流

深入理解Java IO流:字符流 引言 在Java中,IO(输入/输出)操作是程序与外部世界交互的重要方式。 其中,File类是进行文件操作的基础,而字节流和字符流则是数据传输的两种主要方式。 本文将深入探讨这些概念及…

【Redis 神秘大陆】004 高可用集群

四、Redis 高可用和集群 当你发现这些内容对你有帮助时,为了支持我的工作,不妨给一个免费的⭐Star,这将是对我最大的鼓励!感谢你的陪伴与支持!一起在技术的路上共同成长吧!点击链接:GitHub | G…

算法总结篇 —— dfs(搜索、递归、回溯)

有些事情本来很遥远,你争取,它就会离你越来越近 概念 名词解释如何理解递归 dfs 回溯类问题蓝桥杯——飞机降落 dfs 迷宫搜索类问题蓝桥杯——岛屿个数 概念 名词解释 递归是指在一个函数的定义中调用自身的过程,有些复杂问题可以划分为多…

c++的学习之路:26、AVL树

摘要 本章主要是说一下AVL树的实现,这里说的是插入的底层原理 目录 摘要 一、原理 二、四种旋转 1、左单旋 2、右单旋 3、左右双旋 4、右左双旋 三、代码实现 1、节点创建 2、插入 3、旋转 4、判断是否平衡 5、测试 四、代码 一、原理 前面说了搜索…

为啥转化为可编辑面片后有这么多点和线

可以删一下 按住alt按移除可以删掉 选择你要删的那些线 按住alt点移除

eBay、亚马逊自养号测评如何避免风控账号关联选择合适网络IP环境

在自养号下单中选择适合的网络环境至关重要。经过多次实践与测试,积累了大量的经验,希望能够与大家分享,帮助大家避开陷阱,顺利前行。 市面上的网络环境种类繁多,从纯IP类的Luminati、Rola,到纯环境类的VM…

编写Spark独立应用程序

执行本文之前,先搭建好spark的开发环境,我目前只搭建了standalone模式,参考链接 : Spark Standalone模式部署-CSDN博客 1. 安装sbt 1)下载sbt 网址:https://www.scala-sbt.org/download.html &#xff0c…

【云原生 • Docker】 ELK 8.4.3 docker 保姆级安装部署详细步骤

文章目录 ELK简介二、版本说明三、安装部署3.1 创建docker网络3.2 Elasticsearch拉取docker镜像,版本:8.4.3第一次执行docker脚本可以看到控制台的信息,找到这个信息并保存下来创建Elasticsearch挂载目录给创建的文件夹授权将容器内的文件复制到主机上删除容器修改docker脚本…

【GPTs分享】GPTs分享之Image Recreate | img2img​

简介 该GPT是一个专门用于图像编辑、重建和合并的工具。它通过详细的自动图像描述和生成,帮助用户从源图像中重现或修改图像。此工具设计用于为视障用户提供图像内容的详细描述,并生成全新的图像,以满足特定的视觉需求。 主要功能 \1. 图像…

Unity开发holoLens2应用时的ProjectSettings配置

正确的进行Unity工程配置,才能进行后续的【发布】和【部署】操作… 本案例开发环境说明: Unity2021.3.18Win10VS2022HoloLens2 一、平台设置 二、Quality画面质量设置 三、Player玩家设置 四、XR-Plug设置 五、环境测试 导入一个官方demo&#xff0c…

ORAN C平面 Section Extension 23

ORAN C平面Section扩展23用于任意symbol模式的调制压缩参数。此section扩展允许为一个或多个“SymPrbPatterns”指定多组“mcScaleReMask、csf和mcScaleOffset”值。“SymPrbPattern”用于指定一组PRB,这些PRB可以跨越使用prbPattern指定的整个PRB范围(频…

重生奇迹mu坐骑怎么升级

重生奇迹mu坐骑怎么升级 1、前期,都是主线任务,我们必须要跟着主线任务走,前面的话升级一次需要的经验很少的,一天下来可以升级100级是轻轻松松的,主线任务是比较多的,我们跟着任务一直做差不多可以到150级…