SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

多变量时间序列预测是一项重要的任务,它涉及对具有多个变量的时间序列数据进行预测。为了改进这一任务的预测性能,研究者们提出了许多不同的模型和算法。其中一种结合了时间卷积网络(Temporal Convolutional Network,TCN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力机制(Attention)的模型。

该算法的核心思想是利用时间卷积网络来捕捉时间序列数据中的长期依赖关系,通过双向门控循环单元来建模序列数据的上下文信息,并通过注意力机制来自适应地加权不同变量的重要性。

步骤如下:

时间卷积网络(TCN):使用一维卷积层来提取时间序列数据中的局部和全局特征。时间卷积能够通过不同大小的卷积核捕捉不同长度的时间依赖关系,从而更好地建模序列中的长期依赖。

双向门控循环单元(BiGRU):将TCN的输出作为输入,使用双向门控循环单元来编码序列数据的上下文信息。双向GRU能够同时考虑序列数据的过去和未来信息,提高了对序列中重要特征的捕捉能力。

注意力机制(Attention):通过引入注意力机制,模型可以自适应地关注输入序列中不同变量的重要性。注意力机制可以根据序列数据的不同特征,动态地调整它们在预测任务中的权重,从而提高模型的表达能力和预测准确性。

输出层:最后,根据模型的具体任务需求,可以使用不同的输出层结构,如全连接层来进行最终的预测。

通过将时间卷积网络、双向门控循环单元和注意力机制相结合,POA-TCN-BiGRU-Attention鹈鹕算法能够更好地建模多变量时间序列数据的复杂关系,并提高预测性能。然而,需要注意的是,该算法的具体实现可能会根据具体问题和数据集的特点进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

%% %% 算法优化TCN-BiGRU-Attention,实现多变量输入单步预测
clc;
clear 
close all%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);outputName = layer.Name;for i = 1:numBlocksdilationFactor = 2^(i-1);layers = [convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)layerNormalizationLayerdropoutLayer(dropoutFactor) % spatialDropoutLayer(dropoutFactor)convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endfunction [z] = levy(n,m,beta)num = gamma(1+beta)*sin(pi*beta/2); % used for Numerator den = gamma((1+beta)/2)*beta*2^((beta-1)/2); % used for Denominatorsigma_u = (num/den)^(1/beta);% Standard deviationu = random('Normal',0,sigma_u,n,m); v = random('Normal',0,1,n,m);z =u./(abs(v).^(1/beta));end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/822453.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python SQL解析和转换库之sqlglot使用详解

概要 Python SQLGlot是一个基于Python的SQL解析和转换库,可以帮助开发者更加灵活地处理和操作SQL语句。本文将介绍SQLGlot库的安装、特性、基本功能、高级功能、实际应用场景等方面。 安装 安装SQLGlot库非常简单,可以使用pip命令进行安装: pip install sqlglot安装完成后…

【中级软件设计师】上午题08-UML(下):序列图、通信图、状态图、活动图、构件图、部署图

上午题08-UML 1 序列图2 通信图3 状态图3.1 状态和活动3.2 转换和事件 4 活动图5 构件图(组件图)6 部署图 UML图总和 静态建模:类图、对象图、用例图 动态建模:序列图(顺序图,时序图)、通信图&a…

Python爬虫入门教程!

什么是爬虫? 爬虫就是自动获取网页内容的程序,例如搜索引擎,Google,Baidu 等,每天都运行着庞大的爬虫系统,从全世界的网站中爬虫数据,供用户检索时使用。 爬虫流程 其实把网络爬虫抽象开来看,它…

数据相关术语、英文翻译以及定义汇总看这里!

随着数字化时代的快速发展,越来越多的小伙伴认识到了数据的作用性。今天我们小编就给大家汇总了部分数据相关术语以及定义,希望对大家有用哦! 数据相关术语、英文翻译以及定义汇总看这里!(来源于网络,仅供参…

LeetCode 349.两个数组的交集(HashSet的使用)

给定两个数组 nums1 和 nums2 ,返回 它们的 交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 示例 1: 输入:nums1 [1,2,2,1], nums2 [2,2] 输出:[2]示例 2: 输入:nums1 …

React + Ts + Vite + Antd 项目搭建

1、创建项目 npm create vite 项目名称 选择 react 选择 typescript 关闭严格模式 建议关闭严格模式,因为不能自动检测副作用,有意双重调用。将严格模式注释即可。 2、配置sass npm install sass 更换所有后缀css为sass vite.config.ts中注册全局样式 /…

2023年图灵奖颁发给艾维·维格森(Avi Wigderson),浅谈其计算复杂性理论方面做出的重要贡献

Avi Wigderson是一位以色列计算机科学家,他在计算复杂性理论方面做出了重要的贡献,并对现代计算产生了深远的影响。 Wigderson的主要贡献之一是在证明计算复杂性理论中的基本问题的困难性方面。他证明了许多经典问题的困难性,如图论中的图同构…

LeetCode: 209 长度最小的子数组

209. 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。 示例 1…

【QT教程】QT6 Web性能优化

QT6 Web性能优化 使用AI技术辅助生成 QT界面美化视频课程 QT性能优化视频课程 QT原理与源码分析视频课程 QT QML C扩展开发视频课程 免费QT视频课程 您可以看免费1000个QT技术视频 免费QT视频课程 QT统计图和QT数据可视化视频免费看 免费QT视频课程 QT性能优化视频免费看 免费…

vue 常用的日历排班,带农历显示组件(2024-04-16)

显示当前月日历组件,里面带农历或节日显示 后面可以丰富一些国家法定节假期的业务需求 代码 js-calendar.js 文件 var lunarInfo [0x04bd8, 0x04ae0, 0x0a570, 0x054d5, 0x0d260, 0x0d950, 0x16554, 0x056a0, 0x09ad0, 0x055d2, //1900-19090x04ae0, 0x0a5b6, 0…

SEO之搜索引擎的工作原理(三)

初创企业需要建站的朋友看这篇文章,谢谢支持:我给不会敲代码又想搭建网站的人建议 (接上一篇。。。) 排名 经过搜索引擎蜘蛛抓取页面,索引程序计算得到倒排索引后,搜索引擎就准备好可以随时处理用户搜索了…

YOLOv8 目标检测项目实操

一 yolov8 背景介绍 YOLOv8是一种尖端的、最先进的(SOTA)模型,建立在以前 YOLO 版本的成功基础上,并引入了新的特性和改进,以进一步提高性能和灵活性。YOLOv8被设计为快速、准确、易于使用,这使它成为一个很好的选择,…

RAG (Retrieval Augmented Generation) 结合 LlamaIndex、Elasticsearch 和 Mistral

作者:Srikanth Manvi 在这篇文章中,我们将讨论如何使用 RAG 技术(检索增强生成)和 Elasticsearch 作为向量数据库来实现问答体验。我们将使用 LlamaIndex 和本地运行的 Mistral LLM。 在开始之前,我们将先了解一些术…

【Web】2022DASCTF Apr X FATE 防疫挑战赛 题解(全)

目录 warmup-php soeasy_php warmup-java warmup-php spl_autoload_register函数实现了当程序遇到调用没有定义过的函数时,会去找./class/函数名.php路径下的php文件,并把它包含在程序中。 拿到附件拖进Seay里自动审计一下 显然利用终点为evaluateExp…

SpringBoot项目如何实现邮件发送

文章目录 1. 开启邮箱SMTP服务2. 导入pom依赖3. 在配置文件中添加邮箱配置3. 封装EmailTask类4. 写测试类 1. 开启邮箱SMTP服务 这里以163邮箱为例,点击设置——更多设置——POP3/SMTP/IMAP——开启服务 根据提示开启服务之后会得到一个授权码,只显示一…

Cisco ACI使用Postman配置交换机-未完待续

先看下不使用脚本的情况下是怎么配置交换机端口的? 例: 有10个交换机接口要开trunk,透传50个vlan, 使用GUI的操作方式为 1 进入EPG -->Static port 2 右键,绑定接口 3 选中node -->指定接口—>指定vlan —>…

python 列表对象函数

对象函数必须通过一个对象调用。 列表名.函数名() append() 将某一个元素对象添加在列表的表尾 如果添加的是其他的序列,该序列也会被看成是一个数据对象 count() 统计列表当中 某一个元素出现的次数 extend() 在当前列表中 将传入的其他序列的元素添加在表尾…

【学习笔记】Python大数据处理与分析——pandas数据分析

一、pandas中的对象 1、Series对象 由两个相互关联的数组(values, index)组成,前者(又称主数组)存储数据,后者存储values内每个元素对应关联的标签。 import numpy as np import pandas as pds1 pd.Series([1, 3, 5, 7])print(…

pyqt的人脸识别 基于face_recognition库

参考文献: 1、python face_recognition实现人脸识别系统_python facerecognition检测人脸-CSDN博客 2、cv2.VideoCapture()_cv2.videocapture(0)-CSDN博客 1、camera.py文件代码如下;目录如下 import sys from PyQt5.QtWidgets import QApplication, …

NineData正式将SQL开发正式升级为数据库DevOps

NineData SQL 开发早期主要提供 SQL 窗口(IDE)功能,产品经过将近两年时间的打磨,新增了大量的企业级功能,时至今日已经服务了上万开发者,覆盖了数据库设计、开发、测试、变更等生命周期的功能。 为了让企业…