笔记本电脑上的聊天机器人: 在英特尔 Meteor Lake 上运行 Phi-2

02ef7ce387cc7626a0d68985a190181f.jpeg

对应于其强大的能力,大语言模型 (LLM) 需要强大的算力支撑,而个人计算机上很难满足这一需求。因此,我们别无选择,只能将它们部署至由本地或云端托管的性能强大的定制 AI 服务器上。

为何需要将 LLM 推理本地化

如果我们可以在典配个人计算机上运行最先进的开源 LLM 会如何?好处简直太多了:

  • 增强隐私保护: 私有数据不需要发送至外部 API 进行推理。

  • 降低延迟: 节省网络往返的次数。

  • 支持离线工作: 用户可以在没有网络连接的情况下使用 LLM (常旅客的梦想!)。

  • 降低成本: 无需在 API 调用或模型托管上花一分钱。

  • 可定制: 每个用户都可以找到最适合他们日常工作任务的模型,甚至可以对其进行微调或使用本地检索增强生成 (RAG) 来提高适配度。

这一切的一切都太诱人了!那么,为什么我们没有这样做呢?回到我们的开场白,一般典配笔记本电脑没有足够的计算能力来运行具有可接受性能的 LLM。它们既没有数千核的 GPU,也没有快如闪电的高内存带宽。

接受失败,就此放弃?当然不!

为何现在 LLM 推理本地化有戏了

聪明的人类总能想到法子把一切东西变得更小、更快、更优雅、更具性价比。近几个月来,AI 社区一直在努力在不影响其预测质量的前提下缩小模型。其中,有三个领域的进展最振奋人心:

  • 硬件加速: 现代 CPU 架构内置了专门用于加速最常见的深度学习算子 (如矩阵乘或卷积) 的硬件,这使得在 AI PC 上使能新的生成式 AI 应用并显著提高其速度和效率成为可能。

  • 小语言模型 (Small Language Models,SLMs): 得益于在模型架构和训练技术上的创新,这些小模型的生成质量与大模型相当甚至更好。同时,由于它们的参数较少,推理所需的计算和内存也较少,因此非常适合资源受限的设备。

  • 量化: 量化技术通过减少模型权重和激活的位宽来降低内存和计算要求,如将权重和激活从 16 位浮点 ( fp16 ) 降至 8 位整型 ( int8 )。减少位宽意味着模型推理时的内存需求更少,因而能加速内存受限步骤 (如文本生成的解码阶段) 的延迟。此外,权重和激活量化后,能充分利用 AI 加速器的整型运算加速模块,因而可以加速矩阵乘等运算。

本文,我们将综合利用以上三种技术对微软 Phi-2 模型进行 4 比特权重量化,随后在搭载英特尔 Meteor Lake CPU 的中端笔记本电脑上进行推理。在此过程中,我们主要使用集成了英特尔 OpenVINO 的 Hugging Face Optimum Intel 库。

  • Phi-2https://hf.co/microsoft/phi-2

  • Optimum Intel 仓库地址https://github.com/huggingface/optimum-intel

注意: 如果你想同时量化权重和激活的话,可参阅 该文档。

  • Optimum Intel 文档https://hf.co/docs/optimum/main/en/intel/optimization_ov#static-quantization

我们开始吧。

英特尔 Meteor Lake

英特尔 Meteor Lake 于 2023 年 12 月推出,现已更名为 Core Ultra,其是一个专为高性能笔记本电脑优化的全新 架构。

  • Core Ultrahttps://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html

  • 架构介绍https://www.intel.com/content/www/us/en/content-details/788851/meteor-lake-architecture-overview.html

Meteor Lake 是首款使用 chiplet 架构的英特尔客户端处理器,其包含:

  • 高至 16 核的 高能效 CPU

  • 集成显卡 (iGPU): 高至 8 个 Xe 核心,每个核心含 16 个 Xe 矢量引擎 (Xe Vector Engines,XVE)。顾名思义,XVE 可以对 256 比特的向量执行向量运算。它还支持 DP4a 指令,该指令可用于计算两个宽度为 4 字节的向量的点积,将结果存储成一个 32 位整数,并将其与另一个 32 位整数相加。

  • **神经处理单元 (Neural Processing Unit,NPU)**,是英特尔架构的首创。NPU 是专为客户端 AI 打造的、高效专用的 AI 引擎。它经过优化,可有效处理高计算需求的 AI 计算,从而释放主 CPU 和显卡的压力,使其可处理其他任务。与利用 CPU 或 iGPU 运行 AI 任务相比,NPU 的设计更加节能。

为了运行下面的演示,我们选择了一台搭载了 Core Ultra 7 155H CPU 的 中端笔记本电脑。现在,我们选一个可爱的小语言模型到这台笔记本电脑上跑跑看吧!

  • Core Ultra 7 155H CPUhttps://www.intel.com/content/www/us/en/products/sku/236847/intel-core-ultra-7-processor-155h-24m-cache-up-to-4-80-ghz/specifications.html

  • MSI Prestige Evo 笔记本电脑https://www.amazon.com/MSI-Prestige-Evo-Laptop-A1MG-029US/dp/B0CP9Y8Q6T/

注意: 要在 Linux 上运行此代码,请先遵照 此说明 安装 GPU 驱动。

  • 说明文档https://docs.openvino.ai/2024/get-started/configurations/configurations-intel-gpu.html

微软 Phi-2 模型

微软于 2023 年 12 月 发布 了 Phi-2 模型,它是一个 27 亿参数的文本生成模型。

  • Phi-2 发布博文https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/

微软给出的基准测试结果表明,Phi-2 并未因其较小的尺寸而影响生成质量,其表现优于某些最先进的 70 亿参数和 130 亿参数的 LLM,甚至与更大的 Llama-2 70B 模型相比也仅有一步之遥。

1072f9b12c69f6a3edde2795520fc5b2.png

这使其成为可用于笔记本电脑推理的有利候选。另一个候选是 11 亿参数的 TinyLlama 模型。

  • TinyLlamahttps://hf.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0

现在,让我们看看如何缩小模型以使其更小、更快。

使用英特尔 OpenVINO 和 Optimum Intel 进行量化

英特尔 OpenVINO 是一个开源工具包,其针对许多英特尔硬件平台对 AI 推理工作负载进行优化 (Github、文档),模型量化是其重要特性之一。

  • OpenVINO Github 仓库https://github.com/openvinotoolkit/openvino

  • OpenVINO 文档https://docs.openvino.ai/2024/home.html

我们与英特尔合作,将 OpenVINO 集成至 Optimum Intel 中,以加速 Hugging Face 模型在英特尔平台上的性能 (Github,文档)。

  • Optium Intel Github 仓库https://github.com/huggingface/optimum-intel

  • Optimum Intel 文档https://hf.co/docs/optimum/intel/index

首先,请确保你安装了最新版本的 optimum-intel 及其依赖库:

pip install --upgrade-strategy eager optimum[openvino,nncf]

optimum-intel 支持用户很容易地把 Phi-2 量化至 4 比特。我们定义量化配置,设置优化参数,并从 Hub 上加载模型。一旦量化和优化完成,我们可将模型存储至本地。

from transformers import AutoTokenizer, pipeline
from optimum.intel import OVModelForCausalLM, OVWeightQuantizationConfigmodel_id = "microsoft/phi-2"
device = "gpu"
# Create the quantization configuration with desired quantization parameters
q_config = OVWeightQuantizationConfig(bits=4, group_size=128, ratio=0.8)# Create OpenVINO configuration with optimal settings for this model
ov_config = {"PERFORMANCE_HINT": "LATENCY", "CACHE_DIR": "model_cache", "INFERENCE_PRECISION_HINT": "f32"}tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id,export=True, # export model to OpenVINO format: should be False if model already exportedquantization_config=q_config,device=device,ov_config=ov_config,)# Compilation step : if not explicitly called, compilation will happen before the first inference
model.compile()
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
results = pipe("He's a dreadful magician and")save_directory = "phi-2-openvino"
model.save_pretrained(save_directory)
tokenizer.save_pretrained(save_directory)

ratio 参数用于控制将多少权重量化为 4 比特 (此处为 80%),其余会量化至 8 比特。group_size 参数定义了权重量化组的大小 (此处为 128),每个组都具有独立的缩放因子。减小这两个值通常会提高准确度,但同时会牺牲模型尺寸和推理延迟。

你可以从我们的 文档 中获取更多有关权重量化的信息。

注意: 你可在 Github 上 找到完整的文本生成示例 notebook。

  • Github Notebook 地址https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/quantized_generation_demo.ipynb

那么,在我们的笔记本电脑上运行量化模型究竟有多快?请观看以下视频亲自体验一下!播放时,请选择 1080p 分辨率以获得最大清晰度。

在第一个视频中,我们向模型提了一个高中物理问题: “ Lily has a rubber ball that she drops from the top of a wall. The wall is 2 meters tall. How long will it take for the ball to reach the ground?

89e0a81d378d210274e5a7f9fba23f22.gif

在第二个视频中,我们向模型提了一个编码问题: “ Write a class which implements a fully connected layer with forward and backward functions using numpy. Use markdown markers for code.

c02fdd4900c0511ac5de6779c0b6cc79.gif

如你所见,模型对这两个问题生成的答案质量都非常高。量化加快了生成速度,但并没有降低 Phi-2 的质量。我本人很愿意在我的笔记本电脑上每天使用这个模型。

总结

借助 Hugging Face 和英特尔的工作,现在你可以在笔记本电脑上运行 LLM,并享受本地推理带来的诸多优势,如隐私、低延迟和低成本。我们希望看到更多好模型能够针对 Meteor Lake 平台及其下一代平台 Lunar Lake 进行优化。Optimum Intel 库使得在英特尔平台上对量化模型变得非常容易,所以,何不试一下并在 Hugging Face Hub 上分享你生成的优秀模型呢?多多益善!

下面列出了一些可帮助大家入门的资源:

  • Optimum Intel 文档https://hf.co/docs/optimum/main/en/intel/inference

  • 来自英特尔及 Hugging Face 的 开发者资源https://www.intel.com/content/www/us/en/developer/partner/hugging-face.html

  • 深入探讨模型量化的视频: 第 1 部分、第 2 部分https://youtu.be/kw7S-3s50ukhttps://youtu.be/fXBBwCIA0Ds

如若你有任何问题或反馈,我们很乐意在 Hugging Face 论坛 上解答。

  • 论坛地址https://discuss.huggingface.co/

感谢垂阅!


英文原文: https://hf.co/blog/phi2-intel-meteor-lake
原文作者: Julien Simon,Ella Charlaix,Ofir Zafrir,Igor Margulis,Guy Boudoukh,Moshe Wasserblat
译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/822417.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

windows下使用nginx设置静态资源路由

1、下载nginx http://nginx.org/en/download.html 下载稳定版本,以nginx/Windows-1.24.0为例,下载后解压,解压后如下: 2、启动nginx 打开cmd命令窗口,切换到nginx解压目录下: start nginx # 启动nginx服务…

OpenWrt 多拨负载均衡不起作用

检查 负载均衡->规则->Https->粘滞模式 是否启动,设置为 否 如果设置为是,那么根据官方描述: 来自相同源 IP 的流量,如果已经匹配过此规则并且在粘滞超时时间内,将会使用相同的 WAN 接口 意思就是如果你同一个…

实验六 智能手机互联网程序设计(微信程序方向)实验报告

实验目的和要求 请完成创建图片库应用&#xff0c;显示一系列预设的图片。 提供按钮来切换显示不同类别的图片。 二、实验步骤与结果&#xff08;给出对应的代码或运行结果截图&#xff09; 1.WXML <view> <button bindtap"showAll">所有图片</but…

小程序视频怎么保存到mp4

小程序上的视频如何下载成mp4&#xff0c;本文就将教大家如何将小程序视频保存到mp4&#xff0c;这里要用到一个工具:下载高手 下载高手的文件我已经打包好了 下载高手链接&#xff1a;https://pan.baidu.com/s/1qJ81sNBzzzU0w6DWf-9Nxw?pwdl09r 提取码&#xff1a;l09r -…

PHP反序列化命令执行+PHP反序列化POP大链 +PHP反序列化基础

[题目信息]&#xff1a; 题目名称题目难度PHP反序列化命令执行1 [题目考点]&#xff1a; 反序列化命令执行&#xff0c;获取题目flag。[Flag格式]: SangFor{t5euvZ_OB8Jd_h2-}[环境部署]&#xff1a; docker-compose.yml文件或者docker tar原始文件。 docker-compose up …

DataGrip2024安装包(亲测可用)

目录 一、软件简介 二、软件下载 一、软件简介 DataGrip是由JetBrains公司开发的一款强大的关系数据库集成开发环境&#xff08;IDE&#xff09;&#xff0c;专为数据库开发人员和数据库管理员设计。它提供了一个统一的界面&#xff0c;用于管理和开发各种关系型数据库&#x…

用于半监督的图扩散网络 笔记

1 Title Graph Neural Diffusion Networks for Semi-supervised Learning&#xff08;Wei Ye, Zexi Huang, Yunqi Hong, and Ambuj Singh&#xff09;【2022】 2 Conclusion This paper proposes a new graph neural network called GND-Nets (for Graph Neural Diffu…

计算股价波动率python

上述图片上传gemini&#xff0c;提问&#xff1a;转换为python代码 好的&#xff0c;以下是您发送的图像中公式的 Python 代码&#xff1a; python def stock_volatility(prices, opening_prices, N): """ 计算股票价格的波动率。 参数&#xff1a; p…

vscode如何方便地添加todo和管理todo

如果想在vscode中更加方便的添加和管理TODO标签&#xff0c;比如添加高亮提醒和查看哪里有TODO标签等&#xff0c;就可以通过安装插件快速实现。 安装插件 VSCode关于TODO使用人数最多的插件是TODO Height和Todo Tree 按住 CtrlShiftX按键进入应用扩展商店&#xff0c;输入to…

潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏

游戏名称&#xff1a;潮玩宇宙大逃杀 游戏类型&#xff1a;休闲竞技类小游戏 游戏目标&#xff1a;玩家通过选择房间躲避杀手&#xff0c;生存下来并瓜分被杀房间的元宝。 核心功能 房间选择&#xff1a;玩家进入游戏后&#xff0c;可以选择一间房间躲避杀手。杀手行动&…

机器学习——自动驾驶

本章我们主要学习以下内容: 阅读自动驾驶论文采集数据根据论文搭建自动驾驶神经网络训练模型在仿真环境中进行自动驾驶 论文介绍 本文参考自2016年英伟达发表的论文《End to End Learning for Self-Driving Cars》 📎end2end.pdf

c语言中的数组

数组 数组是一种构造类型&#xff0c;是由基本类型构造而成。当我们想用一群变量来描述同一类相同的东西时候&#xff0c;比如100个年龄变量&#xff0c;我们可以这样int age1&#xff1b;int age2&#xff1b;int age3&#xff1b;……int age 100;这样即不方便书写&#xff…

通过腾讯云搭建跨境电商demo的详细操作过程(建站系统 保姆级指导,巨详细)

引言&#xff1a; 有许多做跨境电商的朋友&#xff0c;或者为跨境电商服务的小企业&#xff0c;都会面临搭建电商平台V1.0的问题 因此&#xff0c;花了点时间&#xff0c;找了一个开源的项目&#xff0c;让大家可以跑起来&#xff0c;一方面了解平台都有哪些模块&#xff0c;另…

揭秘ebay、亚马逊测评系统:从稳定环境搭建到防关联技术

在亚马逊、ebay平台上进行自养号测评、L ka等活动&#xff0c;首要问题是确保环境的安全性和稳定性。一个稳定的环境是进行测评的基础&#xff0c;如果无法解决安全性问题&#xff0c;那么从事这些项目就不值得。我们在环境技术研发领域已经有8年的经验&#xff0c;在早期测试了…

创建k8s deploy yaml文件的imagePullSecrets语句

镜像仓库是harbor kubectl create secret docker-registry key --docker-server192.168.0.190 --docker-usernameadmin --docker-passwordHarbor12345

Lagent AgentLego 智能体介绍

本文主要介绍智能体相关基础知识&#xff0c;主流的智能体开源项目&#xff0c;重点介绍Lagent智能体和AgentLego框架。 一. 为什么要有智能体 目前的大预言模型有一些局限性&#xff0c;包括有时候会生成虚假信息&#xff0c;也就是我们说的“大模型胡言乱语”&#xff0c;还…

LeetCode 每日一题 Day 123-136

1379. 找出克隆二叉树中的相同节点 给你两棵二叉树&#xff0c;原始树 original 和克隆树 cloned&#xff0c;以及一个位于原始树 original 中的目标节点 target。 其中&#xff0c;克隆树 cloned 是原始树 original 的一个 副本 。 请找出在树 cloned 中&#xff0c;与 tar…

虚拟机下如何使用Docker(完整版)

Docker详细介绍&#xff1a; Docker 是一款开源的应用容器引擎&#xff0c;由Docker公司最初开发并在2013年发布。Docker的核心理念源自于操作系统级别的虚拟化技术&#xff0c;尤其是Linux上的容器技术&#xff08;如LXC&#xff09;&#xff0c;它为开发人员和系统管理员提供…

字体反爬积累知识

目录 一、什么是字体反扒 二、Unicode编码 三、利用font包获取映射关系 一、什么是字体反扒 字体反爬是一种常见的反爬虫技术&#xff0c;它通过将网页中的文本内容转换为特殊的字体格式来防止爬虫程序直接获取和解析文本信息。字体反爬的原理是将常规的字符映射到特殊的字…

【Web】Dest0g3 520迎新赛 题解(全)

目录 phpdest EasyPHP SimpleRCE funny_upload EasySSTI middle PharPOP ezip NodeSoEasy Really Easy SQL&easysql EzSerial ljctr phpdest 尝试打pearcmd&#xff0c;但似乎没有写文件的权限 ?config-create/&file/usr/local/lib/php/pearcmd.php&a…