pytorch Neural Networks学习笔记

在这里插入图片描述

(1)输入图像,1×32×32,通道数1,高32,宽32
(2)卷积层1,滤波器的shape为6×1×5×5,滤波器个数6,通道数1,高5,宽5。卷积层1的输出为6×28×28。
(3)relu层,输出和输入的shape相同
(4)池化层,滤波器的大小为2×2,stride为2×2,输出为6×14×14。
(5)卷积层2,滤波器的shape为16×6×5×5,滤波器个数16,通道数6,高5,宽5。卷积层2的输出为16×10×10。
(6)relu层,输出和输入的shape相同
(7)池化层,滤波器的大小为2×2,stride为2×2,输出为16×5×5。reshape为1×400后输入到全连接层1。
(8)全连接层1,权重的shape为400×120,输出为1×120
(9)relu层,输出和输入的shape相同
(10)全连接层2,权重的shape为120×84,输出为1×84
(11)relu层,输出和输入的shape相同
(12)全连接层3,权重的shape为84×10,输出为1×10

  这个网络的结构如下:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d-> flatten -> linear -> relu -> linear -> relu -> linear-> MSELoss-> loss

  Let’s define this network:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()# 1 input image channel, 6 output channels, 5x5 square convolution# kernelself.conv1 = nn.Conv2d(1, 6, 5)self.conv2 = nn.Conv2d(6, 16, 5)# an affine operation: y = Wx + bself.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5*5 from image dimensionself.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):# Max pooling over a (2, 2) windowx = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))# If the size is a square, you can specify with a single numberx = F.max_pool2d(F.relu(self.conv2(x)), 2)x = torch.flatten(x, 1) # flatten all dimensions except the batch dimensionx = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return xnet = Net()
print(net)
Net((conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))(fc1): Linear(in_features=400, out_features=120, bias=True)(fc2): Linear(in_features=120, out_features=84, bias=True)(fc3): Linear(in_features=84, out_features=10, bias=True)
)

  这里写代码测试一下flatten函数的用法:

>>> data=[[[1,2,3],[4,5,6]], [[7,8,9],[10,11,12]]]
>>> x_data = torch.tensor(data)
>>> print(f"x_data: \n {x_data} \n")
x_data:tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])>>> print(f"Shape of x_data: {x_data.shape}")
Shape of x_data: torch.Size([2, 2, 3])
>>> x_data = torch.flatten(x_data, 1)
>>> print(f"x_data: \n {x_data} \n")
x_data:tensor([[ 1,  2,  3,  4,  5,  6],[ 7,  8,  9, 10, 11, 12]])>>> print(f"Shape of x_data: {x_data.shape}")
Shape of x_data: torch.Size([2, 6])

  该网络有2个卷积层和3个全连接层,有5个权重参数和5个偏置参数,共10个参数。

params = list(net.parameters())
print(len(params))
for i in range(len(params)):print(params[i].size())

  以上代码打印了每个参数的shape,如下:

10
torch.Size([6, 1, 5, 5])
torch.Size([6])
torch.Size([16, 6, 5, 5])
torch.Size([16])
torch.Size([120, 400])
torch.Size([120])
torch.Size([84, 120])
torch.Size([84])
torch.Size([10, 84])
torch.Size([10])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/822006.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【介绍下负载均衡原理及算法】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

使用docker配置DSP-SLAM

一.Docker环境配置 1.简单介绍 –docker容器技术–。 简单理解:Anaconda用于隔离不同的python环境;docker可以理解成在你的机器里面安装了一个独立的系统,因此它可以隔离不同的CUDA环境,还有着独立的文件系统,防止别…

高级IO和5种IO模型

目录 1. 高级IO1.1 IO的基本概念1.2 OS如何得知外设当中有数据可读取1.3 OS如何处理从网卡中读取到的数据包1.4 IO的步骤 2. 五种IO模型2.1 利用钓鱼来理解2.2 阻塞IO2.3 非阻塞IO2.4 信号驱动IO2.5 IO多路转接2.6 异步IO 3. 高级IO的概念3.1 同步通信 VS 异步通信3.2 阻塞 VS …

k-means聚类算法的MATLAB实现及可视化

K-means算法是一种无监督学习算法,主要用于数据聚类。其工作原理基于迭代优化,将数据点划分为K个集群,使得每个数据点都属于最近的集群,并且每个集群的中心(质心)是所有属于该集群的数据点的平均值。以下是…

STM32有什么高速接口吗?

STM32系列微控制器在高速接口方面也提供了一些强大的功能,虽然没有像Zynq那样的可编程逻辑部分,但有一些特性值得注意。我这里有一套嵌入式入门教程,不仅包含了详细的视频 讲解,项目实战。如果你渴望学习嵌入式,不妨点…

【数据结构与算法】用两个栈实现一个队列

题目 用两个栈,实现一个队列功能 add delete length 队列 用数组可以实现队列,数组和队列的区别是:队列是逻辑结构是一个抽象模型,简单地可以用数组、链表实现,所以数组和链表是一个物理结构,队列是一个逻…

Go 单元测试基本介绍

文章目录 引入一、单元测试基本介绍1.1 什么是单元测试?1.2 如何写好单元测试1.3 单元测试的优点1.4 单元测试的设计原则 二、Go语言测试2.1 Go单元测试概要2.2 Go单元测试基本规范2.3 一个简单例子2.3.1 使用Goland 生成测试文件2.3.2 运行单元测试2.3.3 完善测试用…

easyexcel升级3.3.4失败的经历

原本想通过easyexcel从2.2.6升级到3.3.3解决一部分问题,结果之前的可以用的代码,却无端的出现bug 1 Sheet index (1) is out of range (0…0) 什么都没有改,就出了问题,那么问题肯定出现在easyexcel版本自身.使用模板填充的方式进…

conda新建环境报错An HTTP error occurred when trying to retrieve this URL.

conda新建环境报错如下 cat .condarc #将 .condarc文件中的内容删除,改成下面的内容 vi .condarc channels:- defaults show_channel_urls: true default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.…

权限管理Ranger详解

文章目录 一、Ranger概述与安装1、Ranger概述1.1 Ranger介绍1.2 Ranger的目标1.3 Ranger支持的框架1.4 Ranger的架构1.5 Ranger的工作原理 2、Ranger安装2.1 创建系统用户和Kerberos主体2.2 数据库环境准备2.3 安装RangerAdmin2.4 启动RangerAdmin 二、Ranger简单使用1、安装 R…

【Java NIO】那NIO为什么速度快?

Java IO在工作中其实不常用到,更别提NIO了。但NIO却是高效操作I/O流的必备技能,如顶级开源项目Kafka、Netty、RocketMQ等都采用了NIO技术,NIO也是大多数面试官必考的体系知识。虽然骨头有点难啃,但还是要慢慢消耗知识、学以致用哈…

# RAG | Langchain # Langchain RAG:打造Markdown文件的结构化分割解决方案

【文章简介】 在信息技术的现代背景下,高效地处理和分析文本数据对于知识获取和决策支持至关重要。Markdown文件因其易读性和高效性,在文档编写和知识共享中占据了重要地位。然而,传统的文本处理方法往往忽视了Markdown的结构化特性&#xff…

KNIME 国际化支持投票

你的投票也许能让 KNIME 中文化快一点点。 i18n 是个很搞笑的单词,它是英文 internationalization 国际化的缩写。18 指的是首字母i和末字母n中间有18个字母。另外还有什么 K8s 也是一样,中间省去了8个字母 ... 真是懒的可以。指北君还想起一个类似的笑话…

数字革命的先锋:Web3对社会的影响

引言 在信息技术飞速发展的当下,Web3作为一个新兴的互联网模式,正在逐渐改变我们的生活方式、商业模式和社会结构。本文将深入探讨Web3的核心特点、它在各个领域中的应用以及对社会产生的深远影响。 1. Web3的核心特点 1.1 去中心化 Web3强调去中心化…

记【k8s】:访问 Prometheus UI界面:kubernetes-etcd (0/1 up) Error : out of bounds

记【k8s】:访问 Prometheus UI界面:kubernetes-etcd (0/1 up) Error : out of bounds 1、报错详情2、解决方法 💖The Begin💖点点关注,收藏不迷路💖 出现 “out of bound…

Synchronized锁详解(全网最细)

目录 以下知识基于HotSpot虚拟机实现 1.前置知识 1.1 锁的作用 1.2 Java中常见的锁类型 1.3 锁的重入 2.使用场景 2.1 修饰实例方法 2.1.1 用法 2.1.2 原理 2.1.3 特点 2.2 修饰静态方法 2.2.1 用法 2.2.2 原理 2.3 修饰代码块 2.3.1 用法 3.原理 3.1 对象锁 …

数字电路(四,五章总结)

四.组合逻辑电路设计 由波形图列真值表,之 后画出卡诺图,写出最简逻辑表达式。 卡诺图化简的时候圈住的部分如果某个字母有0又有1的话这个字母删掉,写出其他两个字母。 如下图中黄圈A有0又有1则删除A,这样黄圈代表BC;同理绿圈代…

SpringBoot项目基于java的教学辅助平台

采用技术 SpringBoot项目基于java的教学辅助平台的设计与实现~ 开发语言:Java 数据库:MySQL 技术:SpringBootMyBatis 工具:IDEA/Ecilpse、Navicat、Maven 页面展示效果 学生信息管理 教师信息管理 课程信息管理 科目分类管…

Pytorch入门实战 P06-调用vgg16模型,进行人脸预测

目录 1、本文内容: 1、内容: 2、简单介绍下VGG16: 3、相关其他模型也可以调用: 2、代码展示: 3、训练结果: 1、不同优化器: ①【使用SGD优化器】 ②【使用Adam优化器】 ③Adam 动态学…

(BERT蒸馏)TinyBERT: Distilling BERT for Natural Language Understanding

文章链接:https://arxiv.org/abs/1909.10351 背景 在自然语言处理(NLP)领域,预训练语言模型(如BERT)通过大规模的数据训练,已在多种NLP任务中取得了卓越的性能。尽管BERT模型在语言理解和生成…