redis 集群(cluster)

1. 前言

我们知道,在Web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999% 等等)。但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(主存分离、快速容灾技术)还需要考虑数据容量的扩展,数据安全不会丢失等。

在Redis中,实现高可用技术主要包括持久化主存复制``、哨兵集群,下面分别说明他们的作用以及解决了什么问题。

  • 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失
  • 主存复制:复制是高可用Redis的基础,哨兵和集群都是在复制基础上实现高可用的。复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制
  • 哨兵:在复制的基础上,哨兵实现了自动化的故障转移。缺陷:写操作无法负载均衡;存储能力受单机限制
  • 集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受单机限制的问题,实现了较为完善的高可用方案

2. 夯实基础

2.1 什么是redis 集群

由于数据量过大,单个Master复制集难以承担,因此需要对多个复制集进行集群,形成水平扩展每个复制集只负责存储整个数据集的一部分,这就是Redis的集群,其作用是提供在多个Redis节点间共享数据的程序集。
在这里插入图片描述Redis集群是一个提供在多个Redis节点间共享数据的程序集,Redis集群可以支持多个Master。

2.2 redis 集群的作用

1)Redis集群支持多个Master,每个Master又可以挂载多个Slave

  • 读写分离
  • 支持数据的高可用
  • 支持海量数据的读写存储操作

2)由于Cluster自带Sentinel的故障转移机制,内置了高可用的支持,无需再去使用哨兵功能。
3)客户端与Redis的节点连接,不再需要连接集群中所有的节点,只需要任意连接集群中的一个可用节点即可。
4)槽位slot负责分配到各个物理服务节点,由对应的集群来负责维护节点、插槽和数据之间的关系。

2.3 集群算法-分片-槽位slot

2.3.1 定义

在这里插入图片描述
具体参见:https://redis.io/docs/reference/cluster-spec/#key-distribution-model

2.3.2 Redis 集群槽位slot

Redis集群没有使用一致性hash,而是引入了哈希槽的概念。

Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。

举个例子:比如当前集群有3个节点,那么:
在这里插入图片描述

2.3.3 Redis 集群分片

1)分片是什么?

使用Redis集群时我们会将存储的数据分散到多台redis机器上,这称为分片。简言之,集群中的每个Redis实例都被认为是整个数据的一个分片。

2)如何找到给定key的分片

为了找到给定key的分片,我们对key进行CRC16(key)算法处理并通过对总分片数量取模。然后,使用确定性哈希函数,这意味着给定的key将多次始终映射到同一个分片,我们可以推断将来读取特定key的位置。
在这里插入图片描述

2.3.4 集群槽位分片的优势

最大优势:方便扩缩容和数据分派查找。

这种结构很容易添加或者删除节点,比如如果我想新添加个节点D,我需要从节点A、B、C中取部分槽到D上,如果我移除节点A,需要将A中的槽移到B和C节点上,然后将没有任何槽的A节点从集群中移除即可。

由于从一个节点将哈希槽移动到另一个节点并不会停止服务,所以无论添加删除或者改变某个节点的哈希槽的数量都不会造成集群不可用的状态。

2.4 slot槽位映射(常见3种方案)

2.4.1 哈希取分区

2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数

计算出哈希值,用来决定数据映射到哪一个节点上。
在这里插入图片描述
优点:
简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。

缺点:
原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?

此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

2.4.2 一致性哈希算法分区

1)定义
一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数就会变动

2)作用
提出一致性HASH解决方案,目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系。

3)实现步骤

第一步: 算法构建一次性哈希环

一致性哈希环:一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。

它也是按照使用取模的方法,前面介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对2^32 取模

简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形)。

整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到232-1,也就是说0点左侧的第一个点代表232-1, 0和232-1在零点中方向重合,我们把这个由232个点组成的圆环称为Hash环。

在这里插入图片描述

第二步:Redis服务器IP节点映射

节点映射:将集群中各个IP节点映射到环上的某一个位置。

将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:
在这里插入图片描述

第三步:key落到服务器的落键规则

当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。

如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。
在这里插入图片描述
4)一致性hash方式的优缺点

主要优点
(1)容错性:假设Node C宕机,可以看到此时对象A、B、D不会受到影响。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。

简单说,就是C挂了,受到影响的只是B、C之间的数据且这些数据会转移到D进行存储。

在这里插入图片描述

(2) 扩展性:数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,不会导致hash取余全部数据重新洗牌。
在这里插入图片描述

主要缺点:一致性哈希算法的数据倾斜问题

一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,

例如系统中只有两台服务器:
在这里插入图片描述
5)小总结

为了在节点数目发生改变时尽可能少的迁移数据,将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。

而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。

优点:加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。
缺点 :数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果,存在数据倾斜问题

2.4.3 哈希槽分区

1)为什么会出现哈希槽分区方案
因为一致性哈希算法的数据倾斜问题。哈希槽实质就是一个数组,数组[0,2^14-1]形成hash slot空间。

2)主要作用

解决均匀分配的问题,在数据和节点之间又加入一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系, 现在就相当于节点上放的是槽,槽里放的是数据。
在这里插入图片描述
槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。

3)多少个hash槽

一个集群只能有16384个槽,编号0-16383(0,2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。

集群会记录节点和槽的对应关系,解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取模,余数是几key就落入对应的槽里。HASH_SLOT = CRC16(key) mod 16384。以槽位单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

4)哈希槽计算

Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。

当需要在 Redis 集群中放置一个 key-value时,redis先对key使用crc16算法算出一个结果然后用结果对16384求余数[ CRC16(key) % 16384],这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。

如下代码,key之A 、B在Node2, key之C落在Node3上
在这里插入图片描述
在这里插入图片描述

2.4.4 注意事项

Redis集群不保证强一致性,这意味着在特定的条件下,Redis集群可能会丢掉一些被系统收到的写入请求命令。

3. 面试题及解析

3.1 为什么redis集群的最大槽数是16384个?

Redis集群并没有使用一致性hash而是引入了哈希槽的概念。

Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。但为什么哈希槽的数量是16384(2^14)个呢?

CRC16算法产生的hash值有16bit,该算法可以产生2^16=65536个值。
换句话说值是分布在0~65535之间,有更大的65536不用为什么只用16384就够?作者在做mod运算的时候,为什么不mod65536,而选择mod16384? HASH_SLOT = CRC16(key) mod 65536为什么没启用 具体参见

总而言之。

(1) 如果槽位为65536,发送心跳信息的消息头达8k,发送的心跳包过于庞大。

  1. 在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为65536时,这块的大小是: 65536÷8÷1024=8kb
  2. 在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为16384时,这块的大小是: 16384÷8÷1024=2kb

因为每秒钟,redis节点需要发送一定数量的ping消息作为心跳包,如果槽位为65536,这个ping消息的消息头太大了,浪费带宽。

(2) redis的集群主节点数量基本不可能超过1000个。

集群节点越多,心跳包的消息体内携带的数据越多。如果节点过1000个,也会导致网络拥堵。因此redis作者不建议redis cluster节点数量超过1000个。 那么,对于节点数在1000以内的redis cluster集群,16384个槽位够用了。没有必要拓展到65536个。

(3)槽位越小,节点少的情况下,压缩比高,容易传输

Redis主节点的配置信息中它所负责的哈希槽是通过一张bitmap的形式来保存的,在传输过程中会对bitmap进行压缩,但是如果bitmap的填充率slots / N很高的话(N表示节点数),bitmap的压缩率就很低。 如果节点数很少,而哈希槽数量很多的话,bitmap的压缩率就很低。

4. 总结


相关材料

  1. https://redis.io/docs/reference/cluster-spec/
  2. redis集群知识点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/82140.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【面试经典150 | 双指针】判断子序列

文章目录 写在前面Tag题目来源题目解题解题思路方法一:双指针方法二:动态规划 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为主,并附带一些对…

Eclipse开源代码下载

当前插件开发,需要修改eclipse源码,如需要修改remote相关的代码,所以需要下载相关源码。网上大多资料都说的不清不楚的,也可能我太小白,不明白,反正就是折腾了一两天才感觉有点思路,改如何找源码…

virtualbox共享文件夹设置

宿主机是mac os,虚拟机是centos7.9。 一、virtualbox设置共享文件夹 选中虚拟机->设置->共享文件夹->点击号图标进行添加: 二、给虚拟机安装增强功能 打开virtualbox的虚拟机窗口界面,点击窗口顶部菜单中的设备->安装增强功能…

正则表达式学习和高级用法

以下所有的验证都在 在线验证 1. 起始符 / 正则表达式的起始符2. 限定符 匹配前面的子表达式**1次或多次**。例如,zo 能匹配 "zo" 以及"zoo",但不能匹配 "z"。等价于 {1,}。 ? 匹配前面的子表达式**0次或1次**。例如…

Java基础入门·对存储文件File的相关操作

前言 File类获取的方法 getName() | getPath() File getAbsoluteFile() | File getParentFile() long length() File类遍历方法 IO流对象的分类 1.按照操作的文件类型分类 2.按照数据的流向分类 IO流对象的分类归纳 OutputStream 字节输出流写入文件的步骤 追加写入 F…

电路中VCC VDD VSS VEE GND的含义

在电路中,芯片引脚经常会出现VCC,VDD,VSS,VEE和GND这些标示。 其中VCC一般表示通用芯片的电源引脚,比如一些模拟运放的正电源引脚,74系列数字芯片的电源引脚,VCC一般接相应的正电源电压。 VDD一…

Mock数据:单元测试中的心灵鸡汤

在当今的软件开发领域,质量控制已经成为了一个不可或缺的环节。为了确保软件的稳定性和可靠性,开发者们投入了大量的时间和精力进行各种测试。其中,单元测试作为最基础的测试方法,其重要性不言而喻。然而,单元测试中的…

用于视觉检测的线扫远心镜头VS-LTC系列

VS-LTC 系列线扫远心镜头,近期已经新增 3.5倍及5倍型号 ,支持大靶面芯片相机;适用于半导体,基板以及 Mini LED等行业的视觉检测。 在机器视觉产品资料查询平台,了解更多VS-LTC工业镜头的信息。 大靶面线扫远心镜头 …

swift 页面跳转

segue 故事板的屏幕之间导航 设置全局变量 退回操作 Optionals ??

vue项目打包_以生产环境prod模式打包_vue-cli-service 不是内部或外部命令,也不是可运行的程序---vue工作笔记0025

打开命令行: 首先执行npm install 不执行会报错: npm run build:prod --scripts-prepend-node-pathauto 然后再这样执行就是以生产环境模式打包了.

lv5 嵌入式开发-2 exec函数族

目录 1 进程 – exec函数族 1.1 exec函数族特点 1.2 进程 – execl / execlp使用方法 1.3 进程 – execv / execvp 2 进程 – system 3 exec族要点演示 掌握:exec函数族、system 1 进程 – exec函数族 执行程序,通孔ps -elf发现,父进…

【数据结构】二叉树链式结构的实现(三)

目录 一,二叉树的链式结构 二,二叉链的接口实现 1,二叉链的创建 2,接口函数 3,动态创立新结点 4,创建二叉树 5,前序遍历 6,中序遍历 7,后序遍历 三,结点个…

【Python】自动化办公之路:word自动化实战宝典!

文章目录 前言一、环境安装二、使用步骤1.引入库2.读入数据 Python-docx 编辑已存在文档win32com 将 doc 转为 docxwin32com 操作 word总结 前言 使用Python操作word大部分情况都是写操作,也有少许情况会用到读操作,在本次教程中都会进行讲解&#xff0…

Git(6)——GitHub

目录 一、简介 二、概要 三、注册 ​四、创建仓库 五、推送本地代码 六、拉取远端代码 一、简介 在Git(5)中,我们已经对Git分支的概念和用法有了一定了解,对于在本地进行代码版本管理,其实当前所学的东西基本已经…

C语言生成随机数、C++11按分布生成随机数学习

C语言生成随机数 如果只要产生随机数而不需要设定范围的话,只要用rand()就可以;rand()会返回一随机数值, 范围在0至RAND_MAX 间;RAND_MAX定义在stdlib.h, 其值为2147483647; 如果想要获取在一定范围内的数的话,直接做…

华为云HECS安装docker并安装mysql

1、运行安装指令 yum install docker都选择y,直到安装成功 2、查看是否安装成功 运行版本查看指令,显示docker版本,证明安装成功 docker --version 3、启用并运行docker 3.1启用docker指令 systemctl enable docker 3.2 运行docker指令…

AI绘图提示词Stable Diffusion Prompt 笔记

基础 提示词分为正向提示词(positive prompt)和反向提示词(negative prompt),用来告诉AI哪些需要,哪些不需要词缀的权重默认值都是1,从左到右依次减弱,权重会影响画面生成结果。AI …

LLM预训练之RLHF(一):RLHF及其变种

在ChatGPT引领的大型语言模型时代,国内外的大模型呈现爆发式发展,尤其是以年初的LLaMA模型为首的开源大模型和最近百川智能的baichuan模型,但无一例外,都使用了「基于人类反馈的强化学习」(RLHF)来提升语言…

7.代理模式

1.UML 2.代码 #include <iostream> using namespace std;class Subject{ public:virtual void Request() 0; };class RealSubject:public Subject { public:virtual void Request(){cout << "RealSubject" << endl;} }; class Proxy:public Subj…

【结构型】代理模式(Proxy)

目录 代理模式(Proxy)适用场景代理模式实例代码&#xff08;Java&#xff09; 代理模式(Proxy) 为其他对象提供一种代理以控制对这个对象的访问。Proxy 模式适用于在需要比较通用和复杂的对象指针代替简单的指针的时候。 适用场景 远程代理 (Remote Proxy) 为一个对象在不同…